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In this paper a functional characterization of stochastic evolutions within the state spaces of
commutative C * algebras with identity is derived. Consequences concerning the structure of
those linear evolution equations (master equations) that give occassion to stochastic evolutions are
discussed. In part, these results generalize facts which are well known from the finite-dimensional
classical case. Examples are given and some important particularities of the W * case are

developed.
PACS numbers: 02.10. 4+ w.

1. BASIC NOTIONS AND TOOLS

Let A denote a commutative C* algebra with unity 1.
Whereas the C* norm of x ¢ A will be marked by ||x|.,
the functional norm of an element w ¢ A* of the topologi-
cal dual A* of A will be denoted by ||w||,. As usually,
the state space of A4, S, in sign, is defined as the con-
vex set S,={weA*: w(x*x)=20, w(l)=1},

Let B(A*) denote the linear space of all bounded linear
maps acting from the Banach space A* into A*. Then

{l °ll, on A* induced norm on elements of B(A*) will be
denoted by the same symbol || - ||,. Being equipped with
this topology, B(A*) becomes a Banach algebra. An
element ® c B(A*) is said to be stochastic if dw(1)
=w(1) and @ is positive, i.e., wec A* whenever we A},
where Af means the positive cone in A*, The convex
set of all stochastic maps with respect to A will be de-
noted by ST(A). Let{®,},c; be a net of elements of
B(A*). Then, we say that the net is weakly converging
towards < B(A*), &, =&, if lim,(®,(w)(x)=(@w)(x) for
every we A* and each element x of A. It is an import-
ant fact that ST(A) is weakly compact. Stochastic maps
are exactly those linear transformations on A* that
throw states into states. This property makes them
very useful for the abstract description of dyramical
evolutions of systems (in our case classical systems,
for only commutative C* algebras will be under con-
sideration throughout this paper).

In many applications we will meet commutative W*-
algebras. Then, by standard knowledge, we may identi-
fy the commutative W* algebra A with L*(Q, 1), for a
suitable measure space £ with measure p. In this con-
text, besides the whole set of states, there is the set of
novmal states deserving our interest. These states be-
long to the predual A, of A, In the sense of the canon-
ical identification from above, A, can be identified with
L'(2, ). Thus, normal states correspond to probability
distributions over certain measure spaces, and this is
the frame in which problems of classical statistical
mechanics usually will be dealt with. In this situation,
the set of linear transformations that take normal states
into normal ones will be referred to as ST, (A).

Let f denote a 7eal-valued function on the positive
cone RY of n-tuples of non~negative reals:

FrRTD(sy, e, S0 S (s e ey 80)
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We will refer to f as an h-convex function (of order n)
if f is finite, continuous, convex, and homogeneous of
first degree on RY. We remark that homogeneity and
convexity imply that k-convex functions are subadditive
on R;. By means of h-convex function f we define a
functional S, on n-tuples of positive linear forms of A
by

Splwyy v, w,,)=sup{ak}g:f(wl(a,,), e w,lag)), (1.1)

where the sup runs through the set of decompositions
{a,} of 1 into finitely many positive elements a, of A
(i.e., 22,a,=1). S; in this situation will be spoken of as
an 2~convex functional (of order n), and S; is called
positive if f is non-negative on R} .

In order to get a better idea of an i-convex functional
S, we will take notice of

Proposition 1.1: Let w (x)...w,(x)c L*(§, u) corre-
spond to positive normal functionals w,,...,w, of the
W+ algebra L™(, i). Then, every positive k-convex
functional S; can be represented by

s, (wl,...,w,,)zfnf(wl(x),...,w,,(x))du(x) . (1.2

A proof is given in the Appendix to this paper. The im-
portance of h-convex functionals (of arbitrary order) is
due to the following result (see Ref. 1):

Theorem 1L.2: Let w,,...,w,, 0,,...,0, be states of
the commutative C* algebra A with identity. Then,
there exists a stochastic map < ST(A) performing the
transformation

w,=%0, VE=1, ... ,n, (1.3)
if and only if
Splwy, ooy w, )< S (0,000, 0,) (1.4)

for every h-convex functional S; of order n over A¥.
Moreover, the occurrence of (1.4) for all positive i~
convex functionals S, is sufficient to guarantee the ex-
istence of ¢ obeying (1.3).

We close our preparations by introducing a relation
> between indexed sets of states.

Let N = (wy )jeq, N’ =(w}]);¢; be two indexed sets (lab-
eled by the same index set) of states on A. Then, we
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define

Definition 1.3:(>) N>N' if, for any natural » and
every choice {,,...,i, ¢ 1, we have

S,(w,.l,...,wi"K S,(w{l,...,wgn)

for every h-convex functional S; of order x.

2. THE MAIN RESULT

We start our considerations in fixing the sense of what
is called sfochastic dynamics. Assume thereisgivena
set of stochastic maps (T,,), the members T,, labeled
by the pairs (¢, s) of non-negative reals t, s with {> s.

Definition 2.1: (stochastic dynamics) (7},)is called
stochastic dynamic if

T,=id Yt20, (2.1)
Tey=Tg4Ty, ¥ 52t2uz20, (2.2)
T, (A*) is dense in A* | (2.3)

In case of a W+ algebra A, (T,,) is said to be a no»-
mal stochastic dynamic if T,,eST,(A), and (2.3) is re-
placed with “T,,(A,) is dense in A,.” A simple exam-
ple of a stochastic dynamic is given by

Example 2.2: Let A=1°({1,...,N}), and assume M
=(M;,) an N XN matrix with properties:

(1) 27:M =0, V&
(ii) M;<0, v, M, 20, Vi#k,

Then, {T,s: expM(t — s)} is a stochastic dynamic within
A*=1*({1,...,N}).

Let we S,, and define a “trajectory” (w,), =, within
S, by
w,=T,w, V20, (2.4)
Then, w=w, will be called initial state of the trajectory
(w; )4 =, under this stochastic dynamic (T). The total
system {{w,), =ofwe 5. of the trajectories generated by
(T4 ) has the following properties

Ar=[(wy)ye SAJ is dense in A* for 20, (2.5)

(w, )“’ESA» (ws)wes, Whenever t= 520, (2.8)
where in (2.6) we referred to Theorem 1.2 and Defini-
tion 1.3 with 1=S,, and [ ] in (2.5) means the operation
of taking the linear hull. In the next step, let us ignore
the presence of the generating dynamic (T,,), and ex-
tract from (2.5) and (2.6) the following notion:

Definition 2.3: (¢ system) Let 5, be a subset of states
A. We call {{w;); 20} we s, the ¢ system (of trajectories)
in one case that

Af=[(wy)ue SO] is dense in A* for all {=0, (2.7)
where w,=w is supposed,
{wt}w€so>>{ws}we 50 V tzs=20. (2.8)
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In the case that A} =A* for all {20, we will speak of
the c-system in question as a proper ¢ system. The
elements of S; will be referred to as initial stafes of the
¢ system.

Remavk 2.4: Let A be a commutative W*-algebra.
Then, {(w;);=2} ve s, 18 called a normal ¢ system
(resp. proper normal ¢ system) if the trajectories be-
long to A*, (2.8) is fulfilled, and (2.7) is replaced with
the requirement that A, =[(w,),es | be dense in the
Banach space Ax (resp. Ay =A, V 20).

We note that in the case of a normal ¢ system the
meaning of (2.8) becomes quite transparent due to the
representation offered by Proposition 1.1. In the con-
text of novrmal states, heuristically interesting geo-
metrical and physically motivated interpretations of
h-convex functionals are possible (we will not give them
in this purely mathematical paper). As an example of
a c-system we give

Example 2.5: [see Ref. 3, for instance| Let A
=L"(R®). Then, A,=LY(R?. Take for the set of initial
states S, the probability distributions belonging to
C; (R?) (space of all infinitely often differentiable func-
tions with compact support in R®). Then, due to the fact
that Cj; (R®) is dense in L*(R?), we find the linear hull
of S, to be dense. Look at the heat equation d,V
=3AV. Then, the Cauchy problem of this special master
equation has a unigque solution to the initial state V € 5,
and {V,); =} yes, forms a normal ¢ system that is gen-
erated by a stochastic dynamic (the heat transformation)
given in form of a stochastic integral operator

T, (y,%x)= (ﬁ}-_s)y/z exp (—Ttl:; |y —xlz) ,

with t > s, and T, =id by definition.

We remark that Example 2.5 is not bounded to R®, and
by extending A from C; (R?®) in a suitable way a general -
ized heat equation solvable uniquely through the whole
L*(R3) could be obtained.

The way we arrived at Definition 2.3 and the examples
given suggest that one asks the following question:

Problem 2.6: Given a ¢ system in the state space of
a commutative C* algebra A with identity, can one find
a generating stochastic dynamics?

In this context, the stochastic dynamics (7}, ) is said to
generate { (w;); 2o} wes if w;=Tgw, weS,. The de-
cisive step toward an answer to the question is in prov-
ing the following

Lemma 2.7: Let (w;);e1, (Wj)e1 & S, Then
(Wi )ier > (@] )ie | (2.9)
if and only if there is TeST(A) with
w;=Tw] Vv icl (2.10)

Proof: That (2.10) implies (2.9) is evident from
Theorem 1.2 and the meaning of >>in 1.3.

Assume (2.9) to be fulfilled. Denote by F(I) the set
of all finite subsets of indices taken from . In defining
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AzA for A, A F(1) in case that A DA’, we may think
of {F(1), =} as a directed set, Then, for A € F(I),

we are assured of the existence of T, €ST(A) such that
w; =T, w{, ¥ icA, where we made use of Theorem 1.2,
Since ST(A) is weakly compact, we find a converging
subnet (T, )ge Of the net (7)), ¢p Denote the limit
by T. Assume x=A, and ;jc]. Then, we find 8,= K such
that A 5= {i} whenever =8, thus (Tw})(x)

=lim (TA w,)( ) hmB>BO(TABwi)( ) (TABw )(‘)

= w, (x) by definition of T,. The latter happéns for every
ch S0 Tw; =w; has to be required. Since ; could
range through the whole set I, we have arrived at the
desired result.

Theorem 2.8: Every ¢ system in the state space of a
commutative C* algebra with unit is generated by a
uniquely determined stochastic dynamic, In case of a
commutative W* algebra and a normal ¢ system a
stochastic dynamic in ST, (A) is uniquely given,

Proof: Let{(w,);~o},es, be the ¢ system in question.
Then, (W,),es,> Wg)yes, whenever {>g >0, thus Lem-
ma 2.7 applles to the time cuts (W)pes and (w
with 1=, °

we )(b €S 07

That is we have T~ ST(A) with w, =Tuw, for any
w=S,. Since A¥ is dense in A* and T is bounded, there
is no other bounded linear map performing the transition
from s-cut to ¢ ~cut. Hence we may define 7',,=7T. This
can be made for every pair with { »s =0, and since w,
=tdw,, T, ,=id has to hold. Lettzu>s>0. Then, w,
=T,T,w, and, by the same reasoning as above, we
necessarily have T,, 7, =T,,, and T, (A*) dense in 4,
by triviality follows. Finally, in case of a W* algebra
and a normal ¢ system the assertion follows from the
fact that A, is a Banach space and the above con-
structed stochastic maps throw a dense set of A,
Ay, so the restriction to A, is in ST (4).

To make the correspondence between c-systems and
stochastic dynamics complete, let us note that due to
(2.3) any system of trajectories {w, =T, w}, ~, With
running through a set S, with [S,] being dense in A *
yields a c-system [(2.4) corresponds to S;=5,].

Let Z={(w,) t=olees, e ac-systeminS,. 7 is said
to be a continuous c system if any trajectory is contin-
uously depending on ¢ at any instant />0. Z is said to
be differentiable if the time derivative d,w, exists at
any instant (at O the right derivative). Clearly, differen-
tiable ¢ systems will deserve our main interest, for the
state solutions of many important master equation num-
ber among them (cf. Example 2.5).

We will justify the subsequent formulated regularity
properties for continuous and differentiable ¢ systems,
respectively:

into

Proposition 2.9: Let Z be a continuous ¢ system in
S 4. Then, the Z generating stochastic dynamics (7},)is
strongly continuous, i.e.,

Tyw=lim To,w, vwcA*, t=zs.
£y
s’ s

=5t

Proof: It is plain to see that limy ,,Tp,w=T, w,
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vweA*, v it=zs=0, for, the relation holds on a dense
subset A¥ of A* and (T,S) is uniformly bounded there.
On the other hand, for s={=0, s=t'2 0 we have
=Tgprwy ”1

I Tsrw, —Tst'wtwls" T, w,

+| Ty (@, —w ), (2.11)
and since T ,w, =T, .w; = w,, by the uniform bounded-
ness of (T,) it follows from (2.11) that | T ,w, - T, w,|;
< w, = w,lly, ie., lim,., T, w, =T w,. Then, taking
into account the denseness of A} in 4, and stressing
again the uniform boundedness argument, we see that
lim,, T, w=T,w for every w . A*.

Finally, because T,.,T,; =T, for every u with
s'zu=t’, we get from the proven separate continuity,
and uniform boundedness once more inserted, that with

s> u>t

lim Tyryrw= l}m Tsru Ty w= Te Tpw=Tgw,
s> s st s

t’ >t t! -t

and for s =¢ we may use (2.11) to make the argument
complete. Q.E.D.

For a differentiable ¢ system Z we have to state the

following fact:

Proposition 2.10: Let Z be a differentiable ¢ system
in§,. Then, there is a family (L,), ., of linear opera-
tors, each of which is densely defined in A *, such that
Cauchy problem of the master equation

di¢=L,¢, (2.12)
has a solution for the dense set [S,] of initial elements,
and the trajectories of the c-system Z are among the
state solutions of (2.12). Moreover, a solution of (2.12)
starting out from a state contained in [S,] evolves in S,
exclusively.

Proof: By Theorem 2.8 we are assured of a stoch-
astic dynamic (7, ) with

w,=Thw,, WES, . (2.13)
Since 7 is differentiable, we get from (2.13)
d, wtlt:s =lim (¢ - )" YT, -idw,, weS, (2.14)

£ 28

On the dense linear set A¥ we define an operator L
acting into A * by

= - Wt = i
w z :1,-wsp-st~z:r,~d,w‘,F,:S
i i

(2.15)

Then, due to (2.13) and (2. 14), we can be sure that L is
linearly well defmed onA, . Let we[S,] be a state.
Then w=2r;wes, with certam reals r, and states
w'e S,. Since T,DCST(A) we have

W, =Tpowe S, , (2.16)

with w, =27, v, w}. Because of (2.14), however, we see
dyw,ly s =27 dy 0}, =7, Lywg = Lyw,, ie.,
(W), =0 for w e[Syl NS, is a solution of the Cauchy prob-
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lem for d, ¢ = L, ¢ evolving totally in S , [ due to (2.16)].
That the problem has a solution for any ¢,clS,] is seen
in the same way. Q.E.D.

In other words, any differentiable ¢ system can be
interpreted as a subset of solutions of the Cauchy prob-
lem for a suitable master equation that is solvable on
a dense set of initial conditions such that the equation
admits the trajectory of an initial state to evolve in the
state space.

Remark 2.11: In one case of a commutative W * al-
gebra A, all the derived results of this part remain
true statements if we make the following replacements:

A* replaced with A ,,
S4 replaced with normal states,

(proper) c-system replaced with (proper) normal ¢
system,

ST(A) replaced with ST, (A),
stochastic dynamic replaced with normal stochastic
dynamic,

etc.

3. ¢ SYSTEMS AND MASTER EQUATIONS

The aim of this part is to clarify the structure of
those master equations on A* that admit proper ¢ sys-
tems as state solutions. We start with a class of mas-
ter equations which are quite regular from our point of
view,

Theorem 3.1: Let {L, }; >, be a family of bounded
linear operators on A*, Assume the following condi~
tions to hold:

fL)), sC<wtorvt=0, (3.1)

L, w depends continuously on { for vV ws A%, (3.2)

Vs 2071 3;>0 such that

id+8, L,cST(A) for te(0,s]. (3.3)
Then, the Cauchy problem for

dio=L; ¢ (3.4)

is uniquely solvable through A*. Moreover, the solu-
tions starting out from states form a proper c-system,

Proof: Because of (3.1) and (3.2) the solution w; to
wc A* ig uniquely given by

t t m
w,:w+j L,,,wdm+f me Lowdrdm++ - -(3.5)
0 4] 0
:’Z}Ow .
Fix s 2 0, and define bounded linear maps by

s’

s’ m

Tys@ =@+ Lmq)dm+f L,,,f L.odrdm+--+
s $ 5

(3.8)
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We are going to prove a formula for T, that explictly
shows the stochasticity that we are looking for.

We put 9o =Ty 0. Then, ¢, obeys the equation

SI
(ps'=(p+fs L,p,dr fors <s’<¢, (3.7

Suppose that (f -s)C=8<1, and fix ¢ €A*, Since ¢,
depends continuously on # and (3.1) and (3.2) hold, ¢,
and L, ¢, are uniformly continuous on [s, t]. Let €>0.
Then, we find an integer N such that, with ¢ =({/N)(¢
-s)+s for ¢=0,..., N, the following conditions are
fulfilled

“Lrﬁor—Lt,'(pti ||1S€; ”(Pr"(pt,- "1S€’ V’VE[t,'_l, tiJ’
and (3.8)
(1+e°¢ N o, 8%<¢.

Then, from (3.7) it arises

* (t=s) ¥ 3.9)
” ]; Lr(pr d’r'—T kz;l Ltk (ptk ”1 S2€(t_s), (
whenever uc|t; _,t;|. Letus define @®=¢, rcls, ¢],
t-s
o1 :<p+<~]—\,—) ZLtqu,h for TE[ti_l,hJ, (3.10)
A=1

and inductively

<p;’,=(p+(t;,S) kZHL,k(p't';l for velty_, t: ). (3.11)
One easily checks that (3.8)-(3.11) guarantee that

lor —er il =2e(t-5)5" , (3.12)
and in summing up over n running from 1to N

lo? -0l <2e(t=s)1-P™", vrels,t]. (3.13)

In using (3.10) and (3.11) we will also obtain a repre-
sentation of ¢} in the following form

1
. t-s
@i = H (’d +(_ﬁ‘)—Ltk)‘P +Dy,

(3.14)

B=N

with
) fv ‘
t-s
DN:(—NW'—{Z Lt'. E Ltj '..ZLtI(ptl
i=1 i=1
- LtN . 'Ltl(p} . (3.15)

From (3.6) it arises that || ¢, |, <e®® 9] ¢ll,, V7€ ls, ]
hence we may estimate the norm of Dy given by (3.15) as

Dyl <Y olh(e =2+ 1)< e, (3.16)
where we made use of (3.8).
We define
T, = (id+(—t—7_vi) Lt~> oes (id+(—%s—) L,1> ,
and from (3.13) and (3.14) comes that
P. M. Alberti and A. Uhlmann 2348



2(¢=
loo-Thol = (1355 €.

{3.17)
and since €>0 and ¢ cA* were arbitrarily chosen, we
may take as proven

T, = st- lim T}, (st- strong), (3.18)
N

with T¥, defined as above (where ¢, =(i /N)(f{—s) +s).

Because of (3.18) and the special structure of Ty, we
see that TY, € ST(A) for N>(t-s)8;', so with ¢, s
fixed, T,, in the strong limit of a sequence of stochas-
tic maps, so that T, = ST(A) due to weak compactness
of ST(A). Moreover, for (t-s)C< 1/2 we see

1(t-s)C

iu-sc b

”Zd—T?’s HlS VN)

hence |lid- T4 ]l,< 1, too. The latter means invertibil-
ity of T,, in B(A*). Since T;sT1g=T:, fort 2s>u
holds, T, is stochastic and bounded invertible for every
pair ¢, s, i.e., the state solutions of (3.4) form a pro-

per ¢ system, Q.E.D.

We remark that Theorem 3.1 is a statement which
closely relates to Example 2.2,

Let us close our considerations in proving that the
class of equations described in Theorem 3.1 is primary
in the set of all master equations that admit a proper
¢ system as a solution

Theorem 3.2: Let {L, }; =, be a family of linear oper-
ators on A* such that the Cauchy problem for

do=L, ¢

admits state solutions that form a proper c-system.
Then, every L. is bounded and there exists a sequence
of families {(L7)¢=,}, of bounded linear operators,
each of them being of the type described inTheorem 3.1
such that

L,=st- lim L}, vt=0.

k4

(3.19)

Proof: Let {(w;);=,},¢ s, denote the proper ¢ system
known to be a solution of the master equation under dis-
cussion (the choice of S, =S, is not a restriction!). By
Theorem 2.8 we are assured of the existence of a gen-
erating dynamic (7;,) which, due to Proposition 2.9, is
strongly continuous since (w, )¢ =, is a solution of a mas-
ter equation. We define

LI=n(Te, yny ~id). (3.20)

Inserting w,, we see from (3.20) and the assumptions

lim L w, =lim 2221029 gy =1 w,. (3.21)
n n

(1/n)
Since (3.21) is valid on (w; ) ¢ s, it is valid on
[(we)yes,)=A% too, i.e., lim,Llw=L;w, VwecA*
The principle of uniform boundedness (Banach-Stein-
haus theorem) then gives that L; has to be bounded for
every t = 0. Strong continuity of (T, ) implies L} to be
strongly continuous., Finally, the special form of (3.20)
makes all the other requirements of Theorem 3.1,
(3.1)~(3.3) hold for {L} },~,. Q.E.D.
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It should be clear from the proof that Theorem 3.2
can be modified in various aspects. So, for instance,
we may replace “proper ¢ system” if we require valid-
ity of (3.19) only on a dense subset (i.e., A}). Also, in
the case of a W* algebra it is possible to formulate a
“normal” variant of Theorem 3.2, Finally, we remark
that the results of Proposition 2.10 and Theorem 3.2
which have been derived essentially on the basis of
Theorem 2.8 give only one aspect of applications of
Theorem 2.8. Another field for application and further
concern is to ask for stability properties of ¢ systems
ete.

APPENDIX

Let A be a commutative W* algebra we may identify
with L7(Q, u) for a suitable measure space § with mea-
sure y. Let w,,...,w, denote normal states on A,
Then, there are functions w,(x) ..., w, (x¥)e L' (£, ©)
representing the states via the formula w;(a)
= [w; (%) a(x) du(x), with a(x)eL™(%, 1) being a repre-
sentative of ac A [ more precisely, a(x) is the repre-
sentative of the class in L™(, ) which corresponds to
Al.

With this notion in mind, we are going to prove the re-

- sult we touched on in Sec, 1.

Proposition: For any non-negative Z-convex function
S on R” the corresponding %-convex functional is

Sp(wyyee, Wn) =Lf(»vl(x), cee, wp (X)) dulx) . (AD)

Proof: Our first task will be to show that representa-
tion (A1) is valid in the case that w (x),..., w,(x) 20
are simple functions in LY, 1). As usual, w(x) is said
to be a simple measurable function if w=2,; »;X; with
certain 7; € C* and {x; } denoting the characteristic func-
tions of a finite number of measurable sets that are
pairwise disjunct.

Let us assume the simple functions w; to be repre-
sented by

wi:IZtqu, i=1,...,n. (A2)

Let {@, }{., be a finite orthogonal decomposition of 1

into orthoprojections @,. Let @, correspond to the
characteristic function x.f some measurable set Gi.

Look at

f(wl(Qs), ey wn(Qs))

:f(zl:tll /J(GlnG;): e ,‘Ztnl #(Gl n G;)) .
I

(A3)
Employing subadditivity and homogeneity of f, (A3)
turns into the inequality
F,(@y), oy 0n (RS MG, NG f(Eyyy ey ty)
i
(A4)

As usual, we adopt the convention = -0 =0 which, due to
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f(0,...,0)=0, gives no contradiction in transition from
(A3) to (A4). Because of U, G, = and since G, N G[=@
for s #¢, from (A4) it follows that

giﬂwl(am,

’ tnl)y

.,wn(Qs)NXl: WG fE ...

(A5)

and the right-hand side of (A5) equals fgf(wl(x), vy

w, (x)) du(x). We may suppose that {x; } corresponds to
a finite orthogonal decomposition of 1 into orthoprojec-
tions [then, for ()=, one of ¢;;’s has to vanish], so
we see from (A5)

sup. 2 f(w,(Q W, (@)

{o,}
:f Flwy(x),
Q

where the sup runs through all finite orthogonal decom-
positions of the unity. The left-hand side of (A8), how-
ever, equals S;(w,, ..., w,) by the results on 2Z-convex
functionals | see (5.9) in Ref. 1], i.e., we may take as
proven

w, (%)) dp(x), (A6)

St (0, .,cm=fﬂ Flo(x), 0, (%) du(x)

(AT)

for simple 0,,...,0, € LY(Q, 1) .

In the next step, let w,(x),. w, (x) correspond to nor-
mal states on L”(8, #). Then, due to the continuity of
f, flw,(x),...,w,(x)) is measurable, and positive by
assumption. First, let us show the existence of an in-
creasing sequence £, of measurable sets with u(Q,)
<o, wi(x)X, (%) € L7(Q, u), Vi, and

tim [ £y, .., @ (0) du)
r Q,

=f flw,(x),
Q

where x, stands for the characteristic function of £,.

w, (%)) du(x) , (A8)

In fact, let us define ©, = {x<c (l/r) <h(x) <7}, with
h(x)=3,;w;(x). Then, ,C Q, C -+, and L, )< =
since A(x) < LY(Q, u). Setting Q’ U, 2,, we see

Jarflw (%), ..., w, (%) du(x) = fo flw(x), ..., w, (%)

X du(x), for, from x & @’ it follows that either A(x)=0
by homogeneity, or i(x) =, which happens at most on
a set of measure zero | k=LY, x)!'}]. Thus, by Leb-
esgue’s monotone convergence theorem we see equal-
ity (A5) to be true (f is positive!),

We are going to show that

ff( W (X), 0 ee, Wy (%) diyx) SSp(wy,.en, w,) . (A9)
Q

Since w; X, € L™(Q, 1), we find decreasing and increas-

ing sequences {w;y }N, and {w'm},,respectively, which

consist of simple functions with support in €, such that

Wiy 2w Xy > Wiy Vi, w} =Z§* ¥ (with x ¥ #0
3 iN : X wl x,f ),

(A10)
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lim Wi = Wi Xa =lim wiy in a uniform sense.
Now, define on LY, 1) a contraction E¥ by

5= 3 s [ ot dutox, (a11)

where G, is the measurable set for which x7 is the
characteristic function. Since E" is a positive linear
map with wj, being fixpoints, we get with (A10)

w}y, where we used E"w; = EVw; X,

(A12)

- N
wiysE wy s

and from the second part of (A10) and from (A12) we see

lim EYw; =w; X, uniformly vi. (A13)

N

Because the adjoint map of E¥, E¥*| is positive and

E¥1=y,<1, fromthis, together withpositivity of f and
the original deflmtlon of 5 [ef. (1.1)], follows

Sf(ENwU'"9Ean)gsf("”u"'awn) . (A14)

The E¥w; being simple functions makes (A7) to be ap-
plicable, thus from (A14) we are led to

f FUEY w,(x), EVw, (x)) du(x) <S4 (w,, ..
o,
(A15)

Applying (A13) and recalling u(£,) < =, (Al5) yields

J e,
Qk

from which inequality by means of (A8) the desired re-
sult (A9) can be seen.

w, (%)) difx) <S(wy, ..., w,), (Al6)

Let us demonstrate the validity of the reverse of the
inequality just proved. To this sake, by standard meth-
ods (see Ref, 4) we construct increasing sequences
{siy}y Of measurable simple functions with 0 <8;, <8y,
Se-r < wp, and limy S;4(%) =w; (x) for all vxe Q. We
can choose the sequences in such a way that the conver-
gence is uniform on any subset of Q where w;’s are
bounded.

Especially, {sm} tends uniformly to w; on £, as de-
fined above. One also easily recognizes that JQ: w;(x)
X du(x) =1, Now, by definition of S,, we have

Sf(ou e ,0'") =sup S}”(ou LR )Un)s
M

with (A1T)

S;I(oli" ')On(ah))’

0,)= su;fz o ay),..

with the sup running through all positive decompositions
of 1 into, at most, M positive elements. It is plain to
see that S} is , -continuous, so from [5ixXa

— w; Xg I, %0 follows that

.
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S;l(wJXk;O"’ wnXk):limS/M(squh,--n,anXk)
N

Slilznsf (S1NXk’ e :anXh) (A18)

=lim ,[Q Fs (), ooy Spn(X) di(x)
N %
=f0f(u)l(x), cen, Wy (%)) du(x)
R

< o, .o a3 i)
Q

where in the last steps we made use of (A7) and the uni-
form convergence of {s;,f towards w; on Q, with fin-
ite measure, and positivity of f makes the conclusion
of (A18) complete. Since the increasing sequences

{wi Xx }» converge pointwise to w; on £’, from the pro-
perty of ' (see above) and positivity of w; comes that
@i X — w; ll, 7 0. Hence, from | - [|,-continuity of

S)Y comes that (A18) can be turned into

K@,y ey @) SIQf(wl(x), e on () dulx),  (A19)
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and in applying (A17) to (A19) we have arrived at
51 e er o) € S P00 ) dun) . (A20)
o

Taking together (A20) with (A9), the desired result
(A1) is obtained. We remark that the value = is includ-
ed in all considerations. Q.E.D.
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On the triangle anomaly number of SU(n) representations ®
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A simple geometrical interpretation of the triangle anomaly number of SU(n) representations is
demonstrated. The number is equal to the sum of cubes of projections of weights on the U(1)
direction; U(1) is the group in the reduction SU(n) DU(1} X SU(n — 1). Properties of the anomaly
number are then consequences of properties of weight systems. Explicit formulas are derived for
the anomaly numbers for reducible representations corresponding to general plethysms based on
an arbitrary representation of SU(#n). Generalizations to “‘anomaly numbers” corresponding to

degrees other than three are discussed.
PACS numbers: 02.20.Km, 11.10.Np, 11.10.Gh
I. INTRODUCTION

Renormalizability of a unified nonabelian gauge theory
based on a representation (4 ) of a compact semisimple Lie
group G requires' the vanishing of the triangular anomaly
number 4, ,. This turns out to be a quite restrictive condi-
tion when the group G is of the type” SU(n), n>3 or contains
it as one of the factors, G = G' X SU(n), and the fermion re-
presentations are complex (nonself-contragredient).” Repre-
sentations of simple groups other than SU(n), or of semisim-
ple groups not involving SU(n), are known to be anomaly-
free.? Examples of anomaly-free irreducible complex SU(n)
representations are extremely rare.” It is therefore an im-
perative to study reducible complex representations of
SU(n); see, for example, the papers of Ref. 4.

The purpose of this paper is to point out that the trian-
gular anomaly number 4, , of a representation (4 ) has a sim-
ple geometrical interpretation in terms of the weights of the
representation. For SU(n), it is, up to a normalization, the
sum of cubes of the components of weights corresponding to
the U(1) subgroup in the reduction SU(n) D U(1) X SU{n — 1).
For representations of simple groups other than SU(n), the
triangle anomaly vanishes when it is defined as the sum of
cubes of components of weights, where “component” refers
to any direction in weight space. We exploit this definition of
A, to derive a number of new properties, and to simplify the
proof of known ones.

The results of this paper are of three types. First, the
new definition of the triangular anomaly number relating it
directly to weights (quantum numbers) instead of eigenval-
ues of third-order Casimir operators>> allows a straightfor-
ward physical interpretation depending only on the choice of
quantum numbers assigned to that particular SU(r) weight
space.® Second, the anomaly number is found here for a vast
class of reducible representations. Finally, generalizations to
similar characteristics of SU(n) representations such as
“pentagon anomaly number”’ are described.

A remark concerning notations: There is a well known

“'Work supported in part by the Natural Science and Engineering Re-
search Council of Canada and by the Ministére de ’Education du Québec.
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correspondence between Young tableaux and irreducible re-
presentations of SU(n). Here we specify both by integers

(A A2y A, _ 1) such that A; equals the number of columns of
the Young tableau with i boxes. This is a notation often used
for SU(n) representations but rarely for Young tableaux (in

the usual notation for the latter 4, would represent the num-
ber of rows with i boxes). For simplicity we sometimes denote
the representations by their dimensions, or draw Young tab-
leaux explicitly.

Section II contains the new definition of 4, and its
properties. In Sec. I1I, we derive the formula for the triangle
anomaly number for a general plethysm based on any repre-
sentation of dimension N of any simple Lie group. A number
of examples are shown here. In Sec. IV, we make some obvi-
ous generalizations of the triangle anomaly number to de-
grees# 3 and discuss their properties. The last section con-
tains some additional comments.

1l. THE ANOMALY NUMBER AND ITS PROPERTIES

The new definition of the anomaly number 4, of an
SU(n) representation {4 ) is given by the formula

Ay, =ayw’, (2.1)

where w denotes a weight of the representation (4 ), and w is
the projection of the weight w on the direction in weight
space corresponding to the U(1) subgroup of SU(n) which
occurs in the reduction SU({n} D SU(r — 1) X U(1). The nor-
malization factor g is usually chosen so that 4;, = 1 when
(A ) is the defining n-dimensional representation of SU(n). If
the U(1) weight generator Y has the form

1

—n+1

then
a= —n*fn—)n—-2)]"" (2.3)
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The sum in (2.1) can be evaluated for a general irreduci-
ble representation (4 ). The derivation parallels those for the
second and fourth indices, described in Ref. 7; the resulting
value of 4 ;, agrees with the 4, of Banks and Georgi,’ and is
twice the K, of Okubo.? A simpler proof of the equivalence
makes use of Okubo’s® identity

Tr({t,.t, }2.) = dap K. (2.4)
with ¢, =t, = t, = Y, the left side of (2.4) becomes 2Zw>;
also

dyyy = —4n — 1)n —2)n=2, (2.5)
and the equivalence of the two anomaly numbers is

established.
The formula for 4 is

2Nh Ps— PPz
A= m+nm+a-+m-nm+n

ps—Pi _2P1P2] (2.6)

(n — 1) —2)

where p, = p, (/) is defined by
Hu—dr‘ zpm,, (2.7)

i=1
The /; are defined in terms of the nonnegative integer labels
A, by
J

n—1
= YA +n—j Igj<n—1, 1, =0. (2.8)
K=j
Here we illustrate our definition on two simple exam-
ples, SU(3) representations of dimensions 3 and 6. Consider
the two weight systems shown in Fig. 1. The sum

A, =a[(—%)3+2(§)3] = —fa=1
fixes the normalization as a = — 27/6. Then for the sextet
{6) one has

A(o) = - 261[ ( - %)3 + 2( - %}3 + 3@)3] =17,

which is the well known value of 4.

From the definition (2.1) one finds immediately some
properties of A, ; it suffices to recall some properties of the
weight systems. of the representations involved.

Denoting by (4 ) and (4 ) a pair of mutually contragre-
dient representations of SU(n), one has

Apy = —Ag); (2.9)

inparticular, 4 ;, = O, when (4 J=(1 )isaself-contragredient
(real) representation.

um

wl=

]
win

4
9- 3
FIG. 1. Weights of the representations (3) and (6) of SU(3).
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The anomaly number of a direct sum (A )& (4 ') is
Apyouy =Au) +4uy-
For a product (1 )& (4 ') one has

(2.10)

Apjopy =83 W +w)
=ay W +w?+ 3w + Jww?)

=ay W'+ w?) =NyAuy + 43 Nay,

o (2.11)
where N ;, is the dimension of (4 ). In (2.11) w and w' run
through all the weights of (A Jand (4 '), respectively. We make
use of the property £, w = 2 w' = 0 in deriving (2.11).

Consider now a group—subgroup pair SU(n) D SU(m),
n > m, and the corresponding reduction of a given represen-
tation (4 ) of SU(n) to the representation (4 ') of SU(m). Typi-
cally (4 ') is a direct sum of several irreducible components:

A2 = e ,(1)). (2.12)

The definition (2.1) suggests immediately another property
of anomaly numbers related to the reduction (2.12), namely,

Auy =pAuy =pJ A,

where p is a constant depending only on the way the sub-
group SU(m) is embedded into the group SU(n); it does not
depend on the choice of the representation (4 ). Hence it can
be found once and for all from the equality of anomalies
{2.13) for the simplest representation {1 ), and then used for
any other choice of (1 ).

Let us illustrate the assertion by two examples.

1. SU(r) D SU(n — 1), the SU(n) representations (10---0)
and (010---0) of dimension # and Jn(n — 1), respectively. One
has

(2.13)

(10-+-0)gus(r) 3(10"'0)SU('1 —11® (0"'O)SU(n —

Clearly the anomalies on the left and right side add to 1;
hence also p = 1. Similarly,

(010--0)sy(m = (010--O)syy, 1) @ (10--O)syygy 1)
n—4=n—1)—4+1,

where the second line indicates the corresponding values of
A
2. SU(6) OSU(3) so that the representation (10000) of

SU(6) contains the six-dimensional representation (20) of
SU(3). Thus, from

(10000) D(20)
one has

=pApo =Tp

l= A(10000)
so that
p=3
Then, for instance,
{00002) 5 (04) & (20);
—9=4{—-T70+7)
A proof of (2.13) is given at the end of the Appendix.
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{1l. ANOMALY NUMBERS OF CERTAIN REDUCIBLE
REPRESENTATIONS

The subject of our interest in this section is the tensor
product of several copies of any given representation of
SU(n). More precisely we consider the component (pleth-
ysm) of such a product with a definite permutation symme-
try specified by a Young tableau. Our aim is to derive a for-
mula for the anomaly number A, of an arbitrary plethysm
and then to consider specific examples.

First let us fix an arbitrary representation of SU(n} of
dimension N < «. In order to underline that it does not have
tobeirreducible, we denote it by the trivial Young tableau (.
Its anomaly number is then 4. The content of the appendix
is the proof of the relation

Ayr = Fyr(N g, (3.1)
where the subscript YT stands for an arbitrary Young tab-
leau, and the polynomial Fy(¥ ) depends on the representa-
tion O only through its dimension &. Since we know 4 for
any representation [, [cf. Eq. (2.6)] the determination of Ay
hinges on finding Fy (V) as a function of N and the Young
tableau YT.

We can determine F, (N ) by making a very particular
choice of the representation U, namely the defining repre-
sentation of SU(¥ ). Then any plethysm corresponding to a
connected YT is irreducible [the Young tableau denotes an
irreducible representation of SU(n)]). However, with this
choice made we know the left-hand side of (3.1), and also
Ay = 1. Consequently, we know Fy (V). Thus all one has to
do is to identify the SU(n} representation labels in (2.6) with
the corresponding Young tableau.

Let us now write down the final form of 4y for the
most interesting Young tableaux. Thus we fix a representa-
tion (] of SU(n), N > 2; its dimension is N»>n. The lowest case
is Ay given by (2.6). Every other Ay is then expressed ac-
cording to (3.1) as a multiple of 4:

A =(N+44,,

A =(N— 4,

D H

A YN + 3)N + 64,

£

A__=(N—3)N+ 34,

H

A =lN— 3N — 64,

I
I

A YN + 3)(V + 4N + 8)4,

UN+4)N>+N-—8)4,,

B, 4

AN
{

YN — 4N =N — 84,

A = UN = 3N — 4N — 8l
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A =ININ— 4N+ 4,

and also,
A _ VA2V )
C-DO  (N+2k -1
kT N
= m(N + 3)(N+ 4)(N+ k lAD,
4 _ _(N—2k)N = 3)
tg (N—k— 1)k — 1)t °
kL =N—2k(N—3)(N 4)-(N — k k
! k—1| — 4N —k)dy, N>k,
A~k—- _ WN+k-1N+k+1)
a Tl (N +2)i(k —1)!
X[N*+ N2k —5)—2k—2]A4,,
4 _ N3N —k—1)
b (N —kN(k— 1)
L h
y o X[N?*—N(2k—5)—2k—2]4,,, N>k

IV. GENERALIZATIONS

The summation in the definition (2.1) of 4, is over
cubes of the projections w of the weights w of the representa-
tion (4 ). Similarly one can consider the quantity

A :ﬁli =a Zwk’ k= 031:2)'", (4.1)

that is, the ‘4 th anomaly number” of representation (1 ) of a
simple Lie group G. Here w is the orthogonal projection of
the weight w on a suitably chosen one-dimensional subspace
of the weight space, a convenient choice being, for instance,
the direction of the highest weight of the defining representa-
tion of G. Clearly 4 [}, is the triangle anomaly number of
previous sections if G = SU(n) and the projection of w is
done on the U(1) direction as before.

First however, let us introduce a different normaliza-
tion convention. Instead of fixing the value of 4 {3} for a
chosen representation (4 ), we fix the length of the basis vec-
tors in weight space, i.e., the lengths of the simple roots. Such
a normalization is independent of the value of & so that one
can write

Ak =St (4.2)

To be specific, we put (a,a) = 2, where (a,a) is the square of
the length of the simple root a of the group G. For the groups
of types O(2n + 1), Sp(2n), G(2), and F(4) which have simple
roots of two different lengths, « is the longer of the two.

From the properties of weight systems of representa-
tions of simple Lie groups one has the following properties of
A}

A9, = dimension of (4 ), (4.3)
A :/‘{') =0, (4.4)
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AT =0for G #E, and G #SU(n), n>2,  (4.5)
Alany =A:fu + A%, {4.6)

Alauy = (j)AzirﬁAﬁaq, @)
A =(-1) 1 ya 'y, (4.8)

}ﬁ’j’;éo for all nontrivial representations of any simple G.

AR =(1/R, (4.9)
A, =311+ 21,
for G = SU(2), E, E, Ee, Fy, G, (4.10)

where / is the rank of the group and 7 {7 denotes the mth
degree index™® of the representation (A ); the symbols Eg, E;,
E,, F,, G, stand for the exceptional simple Lie groups. The
property (4.10) is a nontrivial consequence of symmetry
properties’ of weight systems of representations of the
groups indicated. Extensive tables if I ® and 7*¥ are found in
Ref. 8, as well as a description of their properties.

Suppose that G = G, X G,, where G, and G, are simple.
If (1,) and (4,) denote respectively the representations of G,
and G,, we use (4} (4,) for the corresponding representation
of G, X G,. Then

k-ﬁ
A)z)—z(,)A(/{' (Aad

which resembles closely (4.7) except that here (1,) and (4,)
are representations of different groups.
The relation (2.6) generalizes into

AL =p*al), k=23, (4.12)
where (4 ) and (4 ') represent the group G and the subgroup
G ' C G respectively. The constant p*' is independent of {4 ).
Equality (4.12) holds also for k = 4 when G is one of the
simple exceptional Lie groups and G ' is any semisimple sub-

group.’ For even k > 4 equation (4.12) does not hold’; for odd
values of & > 4 the equation has not been investigated.

(4.11)

V.COMMENTS

{1) We defined the triangle anomaly number of an SU{n)
representation in terms of the sum of cubes of U(1) projec-
tions of weights. The sum of cubes of projections on any
other direction is proportional to the sum of cubes of U(1)
projections, the proportionality factor being less than or
equal to unity in magnitude, and independent of the
representation.

(2) The triangle anomaly number of any representation
of any simple group other than SU(#) vanishes when defined
as the sum of cubes of any component of weights. For groups
other than O{4n + 2) and E, the statement is obvious, since
their representations are all self-contragredient. For
O(4n + 2), n>2, the statement follows from the fact that the
Weyl formula’”® for the character contains no third power of
the dummy variables which carry the components of the
weight as exponents. In the absence of an explicit character
formula for E, the statement for E, is most easily verified by
considering the SU(3) X SU(3) X SU(3) content of E irreduci-
ble representations. Each subgroup representation (a)(b )(c)

2355 J. Math. Phys,, Vol. 22, No. 11, November 1981

appears together with (c)(a)(b ), (& )(c)(a), @)E)b), (©)b)@)
(6)(@)(@) (the set is smaller if some of its members coincide).
Application of formula (4.11) shows that the triangle anom-
aly of this set of subgroup representations vanishes.

(3) Al properties of the number 4 %}, k = 0,1,-., were
deduced from properties of weight systems of finite-dimen-
sional representations of semisimple Lie groups (algebras).
Since the weight system of a representation (4 ) does not
change if a complex group is reduced to any of its real forms,
the anomaly number 4 %} does not feel the difference be-
tween the complex group and any of its real forms.

(4) From (4.9) and (4.10) one can see that the anomaly
numbers A4 {5} and the indices 7 3%/ are similar objects. In-
deed, the former are sums of powers of certain projections of
weights, while the latter are similar sums of powers of
lengths of weights.”® In particular, 4 ) = I}, is the dimen-
sion of (4 ). Many of their properties coincide and derivations
of explicit expressions for them follow the same path,’ the
simplest of them being the derivation of Wey!l’s dimension
formula for (4 ). Next in order of increasing complexity are
the expresswns for7(2), or 47, [see Eq. (4.9)]. Formulas for
A5 17, are calculated from an equivalent definition in Refs. 2
and 5; the result is

AR = No( pill) pall) = pilipa(l)
n \(n+ 1)n + 2) (n—l)n+ 1)
pill) — [pdd))’ — 2p.!)pa(!)
(n— 1)n —2) ) >
where n labels the group SU(n), and p,, (/) is defined by
[ =2)" = 3 pollyed, )t (5.2)

i=1 a=0

The representation labels /; are given in terms of the nonneg-
ative integer labels A; by
-1,17,=0.

n—1
= Y A+n—j 1I<j<n (5.3)
K=

Formulas for 13, for all simple groups are again in Ref. 7.
Because of (4.10), 4 {7, is known for SU(2) and the five excep-
tional simple Lie groups. No other formulas are known for
Al or 134,

(5) Recently a generalization of the group—subgroup re-
lation, called subjoining, was found.'® It requires consider-
ation of formal linear combinations of representation with
integer coefficients. If the coefficients are nonnegative the
sum is the familiar direct sum. Here we would like to point
out that one can extend the properties of 4 “’ in such a way
that linear combinations of representations with negative co-
efficients have well-defined values of 4 *). It suffices to put

AFELW =A}§; ‘A&(?»'

(6) The examples of Sec. I11 reveal symmetries between
Ay¢’s corresponding to two Young tableaux which differ by
interchange of rows and columns. One is obtained from the
other by changing certain signs. These symmetries arise
from those of the coefficients C |} in (A3). We have encoun-

tered a similar symmetry previously'' while considering
plethysms based on representations of SU(2) only.
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APPENDIX

It is the purpose of this appendix to derive Eq. (3.1),
which states that 4,1 is a multiple of 4. The proportional-
ity factor Fy(N ) depends on the Young tableau YT and on
the dimension N of the representation O, but not otherwise
on [, or indeed, on the group SU(n) of which O is a reducible
or irreducible representation. More specifically, Fy (N )is a
polynomial of degree p — 1 in N, where p is the number of
boxes in the Young tableau YT.

In what follows (0 may denote the set of N weights w
belonging to the representation [1. We denote by C¥ the set of
N weights uw, i.e., the weights of O, with the scale dilated by
a factor . The triangle anomaly number of T is

Ag =1 Ag. (A1)
Now consider the direct product
(] = [popeorep | =0 @ ¥ @ 0 O, (A2)

where (i ,1,, e, ) is a partition of p into nonnegative inte-
gers. The direct products corresponding to different parti-
tions are clearly independent, as long as N>p.

A Young tabieau may be associated with a partition
(v) = (v,v,,-,v, ) Of p. The presence of v; indicates a row of
v; boxes. The Young tableaux are independent, as long as
N>p.

Suppose for the time being that N»p. The Young tab-
leaux with p boxes and the direct products [p] with Z.u; =p
span the same space, so either can be expressed as a linear
combination of the other. We may write

VT, = SCP . (A3)
m

The direct product [1,1,---,1] (p ones) is the only one which
contains products of p different weights from 1. It appears
with nonzero coefficient C{/, |, on the right-hand side of
every Young tableau.

For illustration we given the relations (A3) for the case
p=4

SLLLYY 4+ 4[2,1,1] + 1[3,1) + 4[2,2] + 4[4],

ﬁ[lylslyll —'%[311] +};[2y2]’

= T8 @ f

(Ad)
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=%[LLL1] —4[2,1,1] 4+ 1[3,1] + 402,21 — 1{(4)].

We now consider the situation N<p. Then there will be
Young tableaux containing columns with more than N
boxes. Equations (A3) remain valid provided Young tab-
leaux with more than N boxes on the left-hand side are re-
placed by zero; the direct products [u] are no longer indepen-
dent. Nonvanishing Young tableaux are still given correctly
by (A3). We emphasize that the coefficients C{), depend
only on the Young tableau and on the g, which label the
direct product [u].

Now Eq. (2.4) is easily generalized to give the triangle
anomaly number of the direct product of k sets of weights.

k k
Apyo-ony = ( IN(?»,))‘Z‘A(&)/NM,!’ (AS)
J= i=

and hence for the direct product [i 445,22, ] we have, using
(A1),

k
Ay =Nle(2/‘?)AD-
=1

Since the largest value taken by k& on the right-hand side of
(A3)is p, it follows that Ay, is A5 times a polynomial of
degree p — 1 in N whose coefficients depend only on YT.

The best way to determine the polynomial F,. (N ) is
from the formula (5.1) with O the defining representation of
SU(n). Since the irreducible representations (4 ) of SU{n) cor-
respond to Young tableaux based on (J, the dependence of
Ay on N can be ascertained once and for all.

We complete this Appendix by giving a proof of Eq.
(2.13).

Write 4,,, = 4 ;; it is the sum of cubes of the projec-
tions of the weights of (4 ) on some direction in weight space
{specifically the U(1) direction of SU(m) weight space]. Write
Ajjo..0) = pA (10..0- With the help of (3.1) we can write down
A/, for any irreducible representation (4 ). We have

A (',n =A4r =Fy¢(N)4 (’10...0)
:p#‘FYT(N)A(IO-nO) =P‘1A(/1)- (A7)

YT in (A7)is the Young Tableau corresponding to the repre-
sentation (4 ).

(A 6)
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Wigner 9/ symbols and the product group
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The 9j symbols of a simply reducible Lie group G are related to the 3/ symbols of the'product group
G X G. It is shown that this relationship leads to certain identities satisfied by the 9/ sympols. Two
known identities involving 6j and 9j symbols are shown to be reduced forms of a new identity

involving 9j symbols.

PACS numbers: 02.20.Qs

1. INTRODUCTION

The properties of Wigner’s 6j symbols are now well
understood’; in particular it is known that the 6j sym-
bols satisfy two independent identities.? The usual
method of deriving these identities is by considering
different coupling schemes for three and four angular
momentum vectors.

Wigner’s 95 symbols have not been so thoroughly in-
vestigated, perhaps because of their relative complex-
ity. Arima et al.?® reviewed the known symmetry pro-
perties (previously derived by Jahn and Hope*), and
derived an orthogonality relation and a number of ident-
ities. Their derivations were based on coupling
schemes for four and five vectors. More recently,
Jang® derived two further identities, involving both
6/ and 9j symbols, from a consideration of the sym-
metry properties of the 15j symbols. This method,
although indirect, is equivalent to the method of coup-
ling schemes but is less tedious.

This paper deals with an alternative method, in
which the coupling problem is transferred to a larger
group. In the case of the three-dimensional rotation
group SO(3), this larger group is the four-dimensional
rotation group SO(4). 1t is interesting to note that re-
cently® a new recurrence relation for the 3j symbols
of SO(3) was derived from the properties of SO(4).
Thus, although the properties of the larger group are
usually determined from those of the smaller, the re-
verse procedure also has some merit.

2. THE PRODUCT GROUP

Let G be a simply reducible’ Lie group, and denote
by G? the Cartesian product group G X G. It may be
easily verified® that G? is also simply reducible, and
therefore we may apply Wigner’s® analysis of the proper-
ties of its coupling and recoupling coefficients. The
notation of Ref. 9 will be used throughout, with a sum-
mation convention over greek and primed roman in-
dices. An asterisk denotes complex conjugation.

The representations of G will be denoted by
i R
’
K A
3)Present address: Applied Mathematics Division, Depart-

ment of Scientific and Industrial Research, P. O. Box 1335,
Wellington, New Zealand.
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where R is an element of G. A basis for the represen-
tations of G2 may be written in terms of tensor products
of the representations of G:

(,%) (R,S)=jR ® kS )
(k, @) O,8)| |« 2 a B

It follows that the 3j symbols of G? associated with
the basis (2.1) are given, in terms of the 3j symbols of
G, by

G,m) (k,n) (l,p)>=<j k l><m n b
k,a) O0,B) (ky) \x x p/\a 8y~

2.1)

(2.2)
Similarly, the 6j and 9 symbols are given by
{(a,d) ®,e) (C,f)} _(ab c}{d e f}
@,7) @, k) G,1) {q woifliok 1) 2.3)
and
(a,d) (®,e) (c,f) a b oeydef
(g,7) (k) G, 1) >={g h i%{j k1 (2.4)

(m,q) G,») (,s)

A unitary transformation is now made to a different
basis of G*, defined by

i, R S i kR ik w\*
(G,k) (R,S) ={[x][_v]}”2<7 X><J }>
&x,3) (8,2) @y ¢/\B & A
G,k R,S)
x .
(a,v) (8,5)
This transformation is similar to the decomposition of
the Kronecker product of representations of G. The 3j

symbols associated with the new basis can be calculated
by recoupling methods and the result is'°

(]ym) (k,n) (Z,P) / . v oS\
@.0) (.p) (s,0)LalrllsIF= o g

mn p)lg v s

(2.5)

imaq
x B n v (2 6)

Il p s
© 1981 American Institute of Physics 2357



However, the 6/ and 9 symbols are not affected by Use of (2.4) and (2.6) and (3.1) gives our result
transformations such as (2.5), and so the recoupling
coefficients of G? in the new basis are still given by a b cyd e f

(2.3) and (2.4). g hoip<i ko Lo=[r s e Ma]fo N ]l Iy U ="]
3. ANEW IDENTITY

Equation (2.6) can be used to derive a number of pro-
perties for the 95 symbols of G; orthogonality relations
X (

for example. The purpose of this note is to demon- TEST N ul v w\* fx oy g\ *
strate a new identity or sum rule for the 9 symbols. a B y/\6 € ¢ n 6 «

m n p)lg v s

Wigner’s 9j symbols satisfy two identities invoving

3j symbols. For G?, these are®
x 1/-/ u’ xl sl v/ y’ 14 w’ Z,
(@,d) ®,e) (c,f) (01 5 77)(6 € 9)(7 ¢ K)
€,)) R @1
m,q) @,7) @,s) ad (g j u'Ymq
@ad) 0 €N\ &) 0r G0 X e sty kol ogn o
= (T,,a) (s',B) (t',‘)/) (u’,ﬁ) (‘U',E) (w,’g). cf )i 1 W p s 2

(m,q) m,v) ®,s)\/a,d) (i) m,q\* a d¥yb e s'Nwe f 1
“\&',m) 6,0) @, &)\, a) w,8) «,mn) x¢g j uyih B VNG 1w

4
m g xMnry)p s 2

x<(b,e) k) )\ GD B,s)\*

(s,8) (', € @’,9)) <(t’,7) @’, £) (z’,x)> ’ ¥ s
(3.1) = [ 10" 30 Mo T Joo” Nl Uy M2 Jue” 0" a0’

and!! £y 2

<(m,q) (2, 7) (p,s)>* (a,d) (b,e) (c,f)

w@n) 6,0 () J&9 ©HED
m,q) &,7) @,s)

a b c)(g h iy(mn p

Xqd e fr<j k 1 y<q v s
_fa,d  ®,e) €N\ @k GD 2 Mt o Ny v 2
w,a) (s,8) @, y)\w,©6 @, e @’,¢)
, a d v\(b e s f
><<(a’d) €, (m’q)> <(b’e) G, %) (n,?’)> x{g j u'y<h k v L ow
@) b0 fom J AR (e 6,0) m g ) r y)p s & (3.3)
X((c,f) o)) (p,s))* (3.2)
t,y) @,z (z,«) Similarly, from (3.2) we find the alternative form

a b cy(d e fym n p

g hoiydg ko lpdg v osy=[]s"]If Il lv" ']

m n p)lg v s){x vy z
¥ s" UYa b c\(g h i
x<u' v whd e fy k1

ror
xy z)0 s ) v ow

a d v\(b e s'(cf t
X<g j WSk ok Vi 1w

m g x\n v yY[p s 2 (3.4)
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Some special cases of (3.4) are of interest, If x,v,
and z refer to the unit representation, (3.4) reduces to

a boyGg k1

d v a)(e s’ b
g h iS{d e f =[r'][s’}{t']{g . j}{h N k}

m n p)im n p

a b cyj k 1

{ftc}defghi
X .
ip 1

,rl S' t' 7,‘I sl t’

(3.5)

On the other hand, if ¢ and d refer to the unit represen-
tation, the reduced form of (3.4) is

. jrs Xy z
{gnp}{ﬂs} e n b =[t'][v'][w']{t, o w,}
e

bih)lel &
Xy z
g h iy(bet)eb?
xj b 14Sh B w0
xw vn v y)lsp 2
(3.6)

Equation (3,6) can also be derived from (2.3) by expres-
sing the 6j symbol in terms of four 3j symbols.

The identities (3.5) and (3.6) were derived separately
by Jang®; they are shown above to be particular cases
of the same equation, The author has attempted to find
a similar simple connection between (3.3) or (3.4) and

2359 J. Math. Phys., Vol. 22, No. 11, November 1981

the identities of Arima ef ql.,*® without success, al-
though it is possible to prove (3.4) by a lengthy calcula-
tion from the formulas of Ref, 3.
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A set of relations is set up which connect quadratic products of the shift operators O § (k = 0,1,2),
which are nonscalar with respect to the O(3) subgroup of SU (3). The usefulness of these relations is
illustrated by the calculation of the eigenvalues of the scalar shift operator O for various

irreducible representations { p,g) of SU (3).
PACS numbers: 02.20.Qs
I. INTRODUCTION

The problem of /-degeneracies in the reduction of irre-
ducible representations (p,q) of SU (3) with respect to its O(3)
subgroup has been considered already two decades ago by
various authors. The construction of bases, and particularly
orthonormal bases, for SU (3) representations in the SU(3)
D0(3) reduction has been the aim of numerous authors.

In fact, most of the approaches which have been proposed
can be viewed as searches for an additional Hermitian opera-
tor of which the eigenfunctions form a basis. It has been
shown that only two such independent operators exist, and
in the present paper we shall denote them by O{ and Q9.
Many alternative notations have been introduced, and these
are summarized by Partensky and Quesne,’ who also study
their interconnection. An excellent review of all common
efforts and results obtained until 1975, more in particular on
the missing label problem and the construction of bases, has
been given by Moshinsky ez al.?

In the present paper attention is drawn to a recursive
method for calculating O ¢ and Q¢ eigenvalues, which has
been developed by Hughes.** The technique essentially re-
lies on a set of relations among products of shift operators
which behave as O(3) scalars. These shifts operators are con-
structed out of the three generators /,, [, of O (3) and the
five generators g, ( — 2 < u <2), which form a five-dimen-
sional tensor representation of O(3). Later on, the O(3} shift
operator construction has been generalized by Hughes and
Yadegar® in such a way that a generally valid algorithm
could be established, whereas many properties of shift opera-
tors were reconsidered. Although the shift operator tech-
nique has proven very successful for eigenvalue calcula-
tions,* it nevertheless should be criticized on the point that
such calculations can become extremely tedious, especiallyj

when /-degeneracy occurs. In fact, whatever method is used
an increase of /-degeneracy always involves new supplemen-
tary problems, and this is the main reason why a case of
three-fold degeneracy has never been treated in a completely
analytical way before.

Recently the shift operator technique has been applied
by two of us® for solving the quadrupole phonon state label-
ling problem, which is related to the analysis of symmetric
representations of O(5) into irreducibles of its O(3) subgroup.
However, instead of setting up relations among scalar triple
product operators, we have established relations among qua-
dratic shift operator products which are no longer O(3) sca-
lars. Motivated by the relevant advantages and simplifica-
tions which the latter type of equations induce in the O(5)
case, we want to reinvestigate in the present paper the SU(3)
state labelling problem.

In Sec. 2 we shall derive the so-called nonscalar rela-
tions and we shall discuss their conformity with certain rela-
tions among scalar triple product operators. Sections 3 and 4
are concerned with a complete analysis of the ( p,0) and ( p,1)
representations, respectively, whereas in Sec. 5 we investi-
gate the lowest angular momentum states.

2. NONSCALAR PRODUCT OPERATORS

In this paper we shall be concerned with the SU(3) shift
operators O £ * (k = 0,1,2) which shift the eigenvalues of the
O(3) Casimir operator L by + k, in the form they have been
originally defined by Hughes,® in terms of SU(3) generators.
Also, we shall, without loss of generality, restrict our atten-
tion to SU(3) states which correspond to zero m, the eigen-
value of the diagonal O(3) generator /,. In that case the shift
operators can be written down as follows:

00=(6)(l + l)go—3g il +q_ily)—3lgsad >+ g% )
O/ '=1{l—1Ng.l_—q_.)— l(q+2127 _q4212+ ),

O =6} —1) g, — 2~ Vgl +q_J)+1— g d% +q_50%) (2.1)
Ol+l =0 :Illx’
01+2=0 :%Aw

2Research Associate N.F.W.O. (Belgium).
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where /(! + 1)is the eigenvalue of L 2. For a detailed description of the SU (3) algebra of generators g, (4 =0, + 1, 4 2),/,and

[, the reader is referred to Ref. 3.

Previously, a set of very useful formulas, containing scalar shift operator products, the Casmirs I, and I, and a second
Hermitian O(3) scalar operator Q { of fourth order in the group generators, has been set up by Hughes.? For later use, we recall

here some of these formulas in slightly altered form:

+3 (2 ‘;3;)_(211)2‘*‘ 5) 07,0 " +3

— 18(/ + 1% + 2)*21 + 3P [120, —I({ +4)]1 =0,

(0 + 2407y

21 + 109 -3

(1417 ! 1?
o2 2A—1)21=3) o1 po (-2
I — 1709 +3‘—%——’o,_.o, 3O

Notice that Eq. (2.4) can be deduced from Eq. (2.2) if in
the latter / is replaced formally by — / — 1. All the relations
{2.2)~(2.4) share the property that they contain only opera-
tors or operator products which leave the /-value of the states
upon which they act invariant. One can, however, easily con-
struct bilinear forms of shift operators which shift / by one,
two, or even three units, and hence the question immediately
arises as to whether there also exist relations connecting such
product operators. By straightforward calculation it is read-
ily verified that this question can be answered affirmatively.
In fact, it can be shown that there are two independent rela-
tions among operators which lower / by one, namely,

(4320 + 1)0,'0%— (I +1)2] +3)0%_,0,"
6l .

—m01+101+1=0, (2.5)
(—1D21=3)07'07—(-3)2-10? _,0,!
~ oot =0, 26)

one relation connecting operators which shift /by — 2, i.e.,
(=1 -20707?-1( +10°_,0,?
—-62/—10,\0'=0, (2.7)

and finally a last relation among the two quadratic operators
which lower / by three units, i.e.,

o/ %0/, -0,.%0/*=0. (2.8)

The corresponding relations between operators that raise the
l-value of the state upon which they act to change by, respec-
tively, one, two, or three units are immediately deduced from
Eqgs. (2.5)-(2.8) by formally replacing / by — (/ + 1) and by
using 0 ,**=0 - ¢+ 1)- It is worthwhile mentioning that
none of the relations (2.2)—(2.8) contain terms linear in the
shift operators. This is essentially due to the fact that the
commutator of any two generators g, is independent of the
¢’s and can be expressed entirely in terms of / + and /[,
There is also a certain connection between the newly
derived nonscalar relations (2.5)—(2.8) and the relations be-
tween triple product operators previously given by Hughes.>
Let us illustrate this by an example. If we multiply each term
of Eq. (2.6) on the left with O ;* ||, and each term of Eq. (2.5)
on the left also with O ;" ||, and if we then eliminate from the
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(¢ +3)
¢+ +27

—2 +2
1+2Y1

(2.2)

VO ' =541 + 1221 + 14, + 1) =0, (2.3)

2072 — 1813 — 1221 — 12[ 121, — (I + 1)l — 3)] =0,

(2.4)

r

resulting two equations the term in O+ ,0?_,0,7, the
following relation among triple product operators is
obtained:

T+ 1@l +3) 0 (I—3)21—1
12(1—1y? 1’0 41y

P ha 01r+21 o/'=— %Oltll o,'0}.

The same relation is reproduced on eliminating the Ca-
simir I, from Eqs. (40) and (42) of Ref. 3 and by making
thereafter use of Eq. (36) of the same reference. Similarly,
from the moment we can eliminate 7, from the triple product
operator relations of Hughes,? it is possible to indicate a suit-
able combination of the relations (2.5)—(2.8) which repro-
duces the same result. However, if use is made only of the
nonscalar relations (2.5)—(2.8), the relations of Ref. 3 among
triple product operators cannot be deduced, since there is no
way by which the SU (3) invariant 7, can be introduced. Also,
it will become clear that for a complete classification of SU
(3) irreducible representations, at least one relation contain-
ing 7, and of the type considered by Hughes is needed.

In the following sections expressions will be derived for
the eigenvalues of the O(3) scalar shift operator O, and this
for certain SU(3) irreducible representations which as usual
are labelled by the integers p and g satisfying p > ¢> 0 and
related to 7, and I, by the formulas

(L) =4p*+¢* —pg+ 3p), (2.9)
(L) =1{P—29)20 + 3 —q)(p+ g+ 3), (2.10)

where ( ) denotes the expectation value between states.
Also, without loss of generality, we can assume hereafter and
in a forthcoming paper that p — 2¢>0. Finally, the exact /-
content of (p,q), which has been extensively studied in the
past by various authors,” will be considered as a well estab-
lished fact throughout this paper.

+1 41 —2
1015077+

3. COMPLETE ANALYSIS OF THE ( p,0)
REPRESENTATIONS

The ( p,0) representations have been studied already in
detail by Hughes* by means of standard shift operator tech-
niques. The relative ease with which the eigenvalue calcula-
tions could be performed rests essentially on the fact that no /
degeneracy occurs in these representations. Nevertheless, it
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is worthwhile to demonstrate how the presently derived
nonscalar relations (2.5)—(2.8) bring about even more consid-
erable simplifications into that type of calculation.

Indeed, let us start from the well-known property that /
can take on only the nondegenerate valuesp, p — 2,p — 4,...,
Oor 1, depending on whether p is even or odd. Since further-
more no confusion can arise, we suppress p and g in the basis
vectors and since, moreover, we consider states correspond-
ing to m = 0, we can simply denote them by |/ ). Let us also
denote the O ¢ eigenvalue by A,. Now, if we select an accept-
able/-valuesuch that |/ ) existsand |/ — 1) is nonexistentand
if we momentarily suppose and that 4, is already known, we
immediately derive from the action of Eq. (2.7) upon |/ ) that

A = w,l, (3.1)
12 1(1 1) !

Furthermore, the application of Eq. (2.8) upon |/ ) proves

that |/ — 3) does not exist. Hence, with the only assumptions

that |p) exists, that A, is known, and that |[p — 1) vanishes,

recursion of (3.1) gives

_1p —2k)(p—2k+1)/1
plp+1)

A

k=0,12,..),
(3.2)
whereas it also follows that |[p — 2k — 1)(k = 1,2,...) are

nonexistent states, Putting/ = p — 2k in(3.2), this relation is
rewritten as

R IR
p(p—}-l)i"’(p [ = even).

As a consequence, the problem is reduced to that of finding
an expression for the eigenvalue 4, belonging to the maxi-

p— 2k

(3.3)

mum angular momentum state |p). To that aim, we let Eq.
(2.2) act upon |p) and by use of (2.9} we immediately can
deduce that A ? takes on the value prescribed by the formula

A5 =6p*(p+ 17(2p + 37%. (3.4)
In order to account for the correct sign of 4, we must use a

triple product operator relation. Following Hughes* we ar-
rive at

=(V6lp(p + 1)(2p + 3). (3.5)
It has to be noticed that the eigenvalues A4, have been ob-
tained without the necessity, as was the case with the stan-
dard shift operator technique, of having precise knowledge
of matrix elements of the form (/|0 30, ?|I).

4. COMPLETE ANALYSIS OF THE (p,1)
REPRESENTATIONS

Assuming that we already know that no [-degeneracy
occurs in (p,1) representations, let us define ¢, and 4, by

= (l+ <”01+101+1|1>
1
= ToEd oo+,
1
d=——//—J0;/%0;%
1 [l+]]2(il—+-2)2( I L2 | )
1

(I +210,20 751+ 2)). 4.1)

0+ 1% +27
By suitable combination of the relations (2.2)—(2.4} and put-
ting / = p — k, the following recursion relations can be
derived:

|
¢ - p—k+lp—k+5) (2p—2k+l)d
p—k+2p P p—kt2p TF
—24p—k+1’2p — 2k + )2kp —p — k* + 3k + 1),
PRETY L L0 DS Lt 1.t St
p—k+27 p—k+2)
+48(p —k)2p — 2k + )20+ 1P + o —k)o —k + 1)p — k —5)], (4.2)
subject to the initial conditions ¢, =d, =d, _, =0. These relations are easily solved
(p—2k—1|0,,*2,<0+l alp=2k—-1)=({p— 2k|0,,_2k_10p‘_‘2k|p—2k)
=24p+ 1) p—2k)p—2k+1)(p—2k—1)2p—2k+1]), (4.3)
(p_2k|0p72k+l —zkIP 2k)=(p— 2k+1|Op—2k0p7—‘2k+llp—2k+l>
=48k(p+ Ip — 2k + 1Y(p — 2k )(p — 2k + 2), (4.4)
(p—2k|0, ka2 p+-22klp_2k>=<p_2k+2'|0+22k0p42k+2lp 2k +2)
=48k (p — 2k + 1)%(p — 2k + 2)’(p — 2k + 3)(p — 2k )(2p — 2k + 3), {4.5)
(p—2k—l|0p122k+10p+_22b1|p-—2k—1)=(p—2k+1|0p72k_,0p—_22k+1p—2k+1)
= 48k(p — 2k + 1’0 — 2k *(p — 2k + 2)p — 2k — 1)(2p — 2k + 1). (4.6)
Using (2.2) we then get
A L, =6(2p — 8kp® + 3p + 8k ’p — 16kp — 11p + 20k + 10k — 6)%, (4.7)
A2y =6(2p> — Bkp® +p° + 8k 2p — Tp — 4k * + 2k — 6), (4.8)
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where again A, is a short notation for the matrix element
(110?|1). At this point it becomes very tedious to obtain the
signof4, _,,_;andA, ,, withthe usual techniques; there-
fore we try the nonscalar relations. If we let Eq. (2.5) act upon
|l } we can prove that

+32 + 1A, = + 102 +31,_,
_ 6/ cd; V2
- (1+1)2‘5[ o ] ! 9

where & is a sign factor not yet determined. Basic to the proof
are the properties

=k |0 = —— (1|0 740, 1), (4.10)
i«
(I + k04D =ak,z<1|01‘+kk01+k|[), (4.11)
with
21+ 1
= - 4.12
Tl S 2k + 1 @.12)

which are satisfied as long as |/ ),|/ + k ) are nondegenerate.
If we replace / by p — 2k, in (4.9) and then substitute herein
the expressions for ¢, _ ., d,_,, ,,andc, 5 ,,, which
are obtained from (4.3}-(4.6), we arrive at

b —2k+3)2p — 4k + 1)/{!,_2,( —(p—2k+1)
X(2P—4k+3)/1p72k~1
=24{v'6)5k (p — 2k ¥ (p — 2k + 2). (4.13)

The only way to satisfy this equation with what we already
know, from (4.7) and (4.8),istodefined, ,, andA,_,, | as

Ap_ 21 = €(V6)(2p* — 8kp® + 3p* + 8k p
— 16kp — 11p + 20k * + 10k — 6) (g =1),
(4.14)
A, = €(V6)(2p° — 8kp® + p* + 8k ?p — Tp — 4k ?
+2k—6) (g=1), (4.15)
whereby € equals + 1 or — 1, but has the same sign in (4.14)

and (4.15). Of course € can still be k-dependent, meaning that
it could change sign for different pairs of consecutive eigen-
values. However, repeating the same calculations which
have led us to (4.13), but choosing / = p — 2k — 1, we ob-
serve at theend that 4, ,, , andA, _,, _, should also be
attributed the same €, whereas 4, _,, _, is found from (4.15)
on replacing £ by & + 1. Hence, we can conclude that (4.14)
and (4.15) are valid for all possible k values. It remains to
determine what is the correct sign of €. To that purpose we
take recourse to a reasoning expounded already elsewhere®
and based upon triple product relations, by which we can
prove that the eigenvalue of the highest angular momentum
state |p) is positive, just as was the case for ¢ = 0. Conse-
quently € has to be set equal to + 1in(4.14)and (4.15), as can
be readily verified by putting £ = 0 in (4.15).

5. ANALYSIS OF THE LOW ANGULAR MOMENTUM
STATES

As a next application of the extended shift operator
technique, we study the situation where / is attributed a
small numerical value, i.e., 0, 1,2, or 3. According to well-
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known properties concerning the exact /-content of repre-
sentations, we have to distinguish between two cases:

(i) p even, g even: there is one / = Osstate, one / = 3 state,
in general two / = 2 states, and the / = 1 state is always
absent;

(i) p odd, g#£0, g# 1 or p even, ¢ odd: thereis one / = 1
state, one / = 2 state, in general two / = 3 states, butno/ =0
state.

Notice that in case (ii) we had to exclude ¢ = 0 and
g = 1 when pis odd. For these two ¢ values, however, we can
immediately refer to the results of the previous sections. In
the following, the orthonormal eigenvectors of O} will be
denoted by |/) if / is nondegenerate, and by |/, (i),
i=1,2,...,n, if | is n-degenerate. Also, we keep the notation
A, or A {? for the corresponding eigenvalue(s).

Let us first investigate the situation described under (i).
From the expression (2.1) of O { in terms of the generators it
immediately follows that

Ao =0, (peven,qeven). (5.1)

Furthermore, the action of Eq. (2.4) upon both / = 2
states |2,(1)) and |2,(2)) yields for both eigenvalues a similar
condition, i.e.,

(A9 =3[4Q0LI260) +1] (=12, (52
or with the use of (2.9),

A9y =2°3[4p* + ¢ —pg + 3p) + 9] (i=12).

(5.3)

Since both eigenvalues are necessarily different we can
set

AY=(=1)""6(v6)[4(p* +¢° — pg + 3p) + 91",
(f=12) (peven,qeven). (5.4)
The result (5.4) agrees with that of Judd et al.” As a next step
we replace /by — (/ 4+ 1) in Eq. (2.5), to obtain the relation
(=202 +10,7'09— 121 - 109, ,0,"

* ﬂ;—l)o 207 =0, (5.5)
which when applied to the / = 2 states yields
050 "2,y =0, (5.6)

immediately showing that

A, =0, (peven, qeven) (5.7)
which again agrees with Judd’s’ result.

Although we have obtained all the required eigenvalues
in closed form, we can as a supplement try to construct the
eigenstates from appropriate shift operator actions. There-
fore, we assume only that there is a minimum angular mo-
mentum state |0) with associated eigenvalue 4, = 0. With
this knowledge, we let Eq. (2.3) act upon |0}, which yields

0,05 '0) =0, (5.8)

meaning that since |0) is the minimum state, |1) is absent.
As a consequence, we obtain, from the action of Eq. (2.2)
upon |0), that

05 %04 2|0) = 3456 I,|0). (5.9)

Now we define two / = 2 states by means of shift operator
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actions, namely one state |2,(a)) by

0, %[0) = |2,(a)), (5.10)
and a second state |2, (b)) as
0, *2,b)) =0. (5.11)

Note that we reserve the notation |2,(i)), / = 1,2 for the orth-
onormal eigenstates of O 9, whereas the states |2, (a)) and
|2,(b)) can be a priori any linear combinations of |2,(1)) and
|2,(2)). Letting Eq. (2.4) first and then Eq. (2.3) act upon
[2,(@)) and |2,(b)), we obtain

(039)*12(a)) = 194441, + 1)[2,(a)),

0y '0,"'|2a)) =0,

(03)°12,(b)) = 1944(aL, + 1)[2,(6)),

05'0,7"(2,(b)) =388801,]2,(b)).
This shows that only one / = 3 state exists. Furthermore, we

see that (09 ) is diagonal in the {|2,(a)), |2(b))} basis, but
02 is not. Indeed, let us define

[ 212, (@) = a2 (@) +a,2[2,(b)),
0312,(b)) = a2, (@) + a2, (b)),
then @,, = — a,, since (09 )?is diagonal, and a, = a,,.
The calculation of |, is straightforward but necessitates the
introduction of the scalar operator Q {. In particular, if we let
Eq. (45) of Ref. 3 act upon |2,{(a)) and |2,(b)) we find

[Q‘; 12,(a)) = 108(41, — 7)|2,(a), (5.14)
Q%12,(6)) = — 108(41, + 7)12,(b)) (p even, g even)
Hence, Q9 isdiagonalin thebasis { |2,(a)),|2,(6)) }. From Eq.
{40) of the same paper, we obtain with the help of (5.14) that
a,, = — 108(v/6) {I,)/(I,), where (I} (j = 2,3) is a short
notation for (2,(a)|1;|2, (a)) = (2,(b)|L;|2,(b)). Finally, a,,
is calculated from a, and the eigenvalue of (09 )? and it is
readily verified that a, = — a}, — 1944(4(l,) + 1). The
sign of @ |, is arbitrary, since a change of that sign only corre-
sponds to an interchange of |2,(a}) and |2, ()). From the
foregoing we may conclude that by only the assumption of
the existence of a nondegenerate lowest angular-momentum
state |0), we have been able to construct the other low angu-
lar momentum states explicitly using shift operator actions.

We now proceed with the analysis of case (ii). Here it
appears that we cannot derive the O9 eigenvalue directly.
But, we learn immediately from the action of Eq. (2.6) upon
|2) that the O eigenvalue is proportional to the O eigen-
value, namely,

(5.12)

(5.13)

odd, ¢#0, g# 1)
p even, g odd
To our knowledge, this property has never been mentioned
explicitly before. Next, we let Eq. (2.7) act on each of the

I = 3 states |3,(1)) and |3,(2)). Taking into account that
{1105 '12)] = (5(1]0; 'O+ '[1)/3)'/* and that the state
|2) is nondegenerate, we obtain

A, = — 3, (p (5.15)

(A5 —64,)110; >~ 15\/%(<1|0{‘01“|1))”2

XQIO;TB ) =0 (i=1.2) (5.16)
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Similarly, if we let Eq. (2.6) act upon |3, (i)} (i = 1,2), and use
(2|0 Y1) = (3(1}0 ;'O * '[1)/5)"?, it follows that

{44905 " — 3\/%((1|0{ '0 1)) (L0 5213,

=0 (i=12)
Equations (5.16) and (5.17) are consistent if
4PAY—64,) —45(1105'0 1) =0 (i=1,2)
Next, applying Eq. (2.3) upon |1) gives (5.18)
427 + (110, 0 '|1) — 864[4(I,) + 1] =0. (5.19)
Elimination of (1|0, '0* ![1) from (5.18) and (5.19) yields
(A1) — 64,4 —45[216(4(L,) + 1) —A2]=0
(i=12). (520)
Hence, since A ' is necessarily different from A &, we can set
A =3{A, +2(— 1y '[2704(L) + 1) — 23]V
(=12, (5.21)
Consequently, we have managed to express the eigen-
values A, and A ¥ directly in terms of A,. In order to calculate

the latter eigenvalue, we make use of Eq. (45) of Ref. 3, which
after the replacement of / by — (/ + 1) reads

1 {Oltnof1 01+22012)

(—12\ 12 1% — 1)

+ 61 [ — 1221 — VI, + (I + 1)21* — 10 — 9)].
(5.22)

(5.17)

Q7=

The action of (5.22) upon |2) produces

05 =10;"'0;"'—108[41, + 7]
which, due to (5.15) and (5.19), reduces to

9 = 108(41, — 5) — 4 3. (5.23)

Substituting this result in Eq. (40) with / = 2 of Ref. 3 we
obtain

Ag - 2334(3<12> + 1)/12 + 2537(\/6)<13) =0
or, with the help of (5.15),

A3 =233%3(L,) + 1, — 23V 6)KI,) =0.  (5.24)

This cubic equation yields three different solutions for 4,,
which after substitution of (2.9) and (2.10) into (5.24) read

A= —2(v6)p —2g), or AP =2(v6)2p — g+ 3),
or
AP = —2v6)(p+g+3) (5.25)

By numerical verification of a few { p,q)-representations it
can be intuitively understood that A ! is the appropriate ei-
genvalue expression for the case that p is even and g is odd,
A @ if pis odd and g even, and A} if p and ¢ are both odd.

6. DISCUSSION

A first and evident step in the development of shift oper-
ator techniques for the classification and analysis of irreduci-
ble representations of SU(3), is to discern the independent
relationships between the O(3) scalar bilinear forms of the
shift operators and the Casimirs L 2, /,, and I,. By this, how-
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ever, one can only obtain relations in which O, the scalar
shift operator, occurs quadratically. As a consequence, these
relations alone are insufficient with regard to the O eigen-
value and eigenstate determination. Also, the sign ambiguity
of the eigenvalue corresponding to the highest angular mo-
mentum state, a fact that we observed at several occasions, is
an immediate aspect of the quadratic occurrence of Of. In
order to transform the shift operator technique into a com-
plete and adequate calculation method, relations among
O(3) scalar triple product operators have been established
and incorporated by one of us previously.>* Although this
opened the way to calculation successes, the fact that Q $ and
[09,09], where QF is another O(3) scalar operator, enter
these relations makes them somehow less handsome in prac-
tice. Therefore, we have envisaged at the beginning of this
paper considering also nonscalar products of shift operators
and analyzing the relationships between these objects. We
found at the lowest level, namely, that of quadratic products,
a set of formulas that permitted us to carry out, on a variety
of illustrative examples, the eigenvalue calculation in a much
shorter and sometimes almost immediate way. In fact, the
most striking importance of the presently derived nonscalar
relations is that O ¢ occurs linearly. It should be remarked
that none the less we could not forget completely about the
triple product relations, and this is mainly due to the fact
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that the second independent SU(3) Casimir 7, of third order
in the group generators only enters equations which are at
least of third order in the shift operators too.

Finally, the examples which we have quoted in the pre-
sent paper have in common that either one of the SU(3) re-
presentation labels, either the angular momentum has been
given a fixed numerical value. In a forthcoming paper we
shall insist on the extreme usefulness of the relations between
nonscalar products by also analyzing in the new context gen-
eral ( pq) representations.
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In a preceding paper relations have been derived which connect nonscalar quadratic shift
operator products. Here, the extreme usefulness of these relations is demonstrated by the example
of the O {-eigenvalue calculation for the cases / = p — i (i = 0,1,2,3, and 4), where ( p,q) is any
SU(3) representation. For the first time a case of threefold /-degeneracy is completely solved in a

purely analytical way.

PACS numbers: 02.20.Qs

I. INTRODUCTION

In a preceding paper' (to be referred to as 1), it has been
shown that the set of relations existing between nonscalar
products of the SU (3) shift operators O **(k = 0,1,2), con-
stitutes a very useful complement to the standard shift oper-
ator calculus®? especially with regard to the calculation of
O/ eigenvalues and the determination of mutually orthogo-
nal eigenstates. Indeed, many of the results which, on use of
the scalar product operator relations alone, were obtained
only at the expense of laborious efforts, have been repro-
duced in I in a much easier and shorter way. Also, problems
which were almost intractable with the usual shift operator
techniques before, such as for example the complete analysis
of the (p,1) representations, were shown in I to become
straightforwardly solvable on account of the nonscalar rela-
tions. Similar simplifications in eigenvalue calculations,
caused by the inclusion of nonscalar product operators, have
been also encountered recently by two of us while studying
the group O(5).*

In order to raise the present extended shift operator
technique to a level of applicability which can be compared
to that of other calculation methods available,>® we propose
hereafter a full analysis of the highest angular momentum
states of the general (p,q) representations. In the forthcoming
sections our main concern will therefore be the determina-
tion in an analytical form of the O { eigenvalues if / equals
consecutivelyp,p — 1,p — 2,p — 3,and p — 4. The last case
is especially interesting since to our knowledge it has never
been treated explicitly by any other technique before.

2. THE MAXIMUM ANGULAR MOMENTUM STATES

Since the labels p and g, although restricted in value by
the inequalities p»2¢ >0, are kept arbitrary throughout, they
can be suppressed in the states. As in I, we consider only
states corresponding to m = 0. Hence, the O eigenstates
will be simply denoted by |1,(i)) (i = 1,2,...,n)if / is n-degener-
ate, and by |7 ) if /is nondegenerate. In order to conform with

“Research Associate N. F. W. O. (Belgium),
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previous notations, the O{ eigenvalues will be denoted by
A e,
O\L () = A PILD- (2.1)
The maximum angular momentum state |p) being non-
degenerate, the square of A, is immediately found from the

action of Eq. (L.2.2) on |p) and by using
L\l = {p* + ¢* — pq + 3p)|! ). Itfollows that 4, is given by

A, = /60 + 1)(2p + 3)p — 29)
with either the + sign or the — sign. Unfortunately, none
of Egs. (1.2.2)~(I.2.8) can account for the correct sign. There-
fore, we have to fall back upon triple product operator rela-
tions which contain the second invariant /,. Following a rea-
soning expounded already in detail by one of us elsewhere,’
we arrive at

A, = \/6(p + 1)(2p + 3)p — 29), (2.2)
always on the assumption that p — 2¢>0.

3. EIGENVALUES OF THE STATES |p — 1>

For the derivation of the closed expression (2.2) for 4,
the nonscalar relations (1.2.5)—(1.2.8) were of no particular
interest. Also, an analogous expression for 4, |, associated
with the nondegenerate states |[p — 1), could be derived pre-
viously by using only relations connecting scalar products.
However, the new relation (I.2.5) makes it possible to repro-
duce the same result in an immediate and nearly trivial way.
Indeed, from the action of both sides of (1.2.5) upon |p) it
follows that

p+3)2p+ 10, '0,lp) =+ 1)2p+3)0; _,0, 'Ip),

(3.1)
from which one easily deduces with the help of (2.2) that
A, 1 =4/6(p+3)2p + 1)p — 29)- (3-2)

For the sake of completeness, it should be proved that the
states [p — 1) exist. In fact it is well known that this is not
always true. But, this is easily verified, since by the action of
Eq. (I.2.3) upon |p) one readily arrives at
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0|00, 'Ip) =24p%p + 12 + 1)p — g)g. (3.3)
Hence, the state |p — 1) exists only if g5£0 (g = p does not
occur due to the inequality p — 2¢>0). Consequently, the
expression (3.2) is valid only for g #0, and also the caseg = 0
should therefore be treated separately if we continue to lower
the l-value. This we have accomplished in 1.

4. EIGENVALUES OF THE STATES [p — 2>

There are in general two ways of generating [p — 2)
states by the action of an /-lowering shift operator, namely
O, *p)and O, ' |p — 1). Hence we set

{ 5 oY =ay s lp—~2,(1) +af, o —2,2)),

O, 'lp—1 =06 ,lp—2,(1)) + b3 L lp—2,02)),
where it is assumed that |p — 2,{1)) and |p — 2,(2)) are or-
thogonal to each other and normalized to unity if not equal
to the zero vector. Note that we leave open the possibility
that either |p — 2) is nondegenerate or even does not exist.

Letting Eq. (1.2.4) act upon |p), it is straightforwardly
deduced that

<P]0 +2 0] r2|p>

p—2

= 24pip —

(4.1)

122p + Viplp — 2)20 — 1) + (p — 29)°],
(4.2)

whereas the action of Eq. (I.2.3) upon |[p — 1) gives rise to
@-10,50,"\p—1)

= 24p(p + U)p — 1V[plp — 1)lp — 2) — (o + 1)p — 29)°].

(4.3)
Now we take advantage of a nonscalar product relation by
letting Eq. {1.2.5) act upon |p — 1), which on account of the
independence of |p — 2,(1)) and |p — 2,(2)), produces two
relations which can be summarized as follows:

\/E(P +2)2p —1)p + 3)(2p + 1)p — 29)b ',

1
—pl2p+ AY_,b0_, -6_(!’[’3_)
X [24p*(p + 1Y(2p — 1)p — q)q) %l _, =0,
(i =1,2).
(4.4)
Here we also used the fact that
0 “+ ll lp _ 1>
2p—1
- [2;’+ = —10,'0,[p— D[y @45)

which, apart from an aribrary choice of phase, follows from
a well-known general property,” and the fact that since |p)
and [p — 1) both exist and are nondegenerate (if ¢ £0), the
matrix element in (4.5) can be inverted, i.e.,

p—10,'0|p—1)=(|0,},0, 'p). (4.6)

In a similar way, Eq. (1.2.7) acting upon |p) leads with the
help of (3.3) and (4.1} to

\/EV’ —ip—2)p + 1)(2p + 3)lp — 29)a)) _,
—pp+ 147 a)
— 61249%(p + 17(2p + 17(2p — 1)lp — q)g1?6)_, =0,
(i=1,2) (4.7)
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It has to be emphasized that repeated occurrence of indices
in (4.4) and (4.7) does not mean summation with respect to

these indices. Equations (4.4) and (4.7) are four linear homo-
geneous equations with respect toall_, and b’ , (i=1,2).
The determinantal condition which expresses that the solu-
tion differs from the trivial zero solution is a quadratic equa-
tion which has to be satisfied by 4! , and A7 ,, namely

/{‘a2\/6p+ 1)(2p + 1)(p — 2g)4
+6(p— 1)2p — Dp* — 420" + 9 +9)
—49(p —q)(2p> + 9 + 1)] = 0. (4.8)

Consequently, the eigenvalues of O _, can be brought into
the following form:

LA;:LZ = J6lip+ 1120+ 1ip — 200 + 6y ], 49
2, =Jelip+ 120+ o —29—6yr 1,
where

F=p*+p—17—4%p — gy (4.10)

The substitution of the solution (4.9) into either Egs. (4.4) or
(4.7) leads to the following relations:

po = _ PPl —29+(— ' pr ai
20(2p + 1)qlo — )20 — 1)
(i =1,2). (4.11)

It has to be noticed that in (4.11) infinities are excluded since
neither ¢, p — g, nor p can be zero.

Finally, we want to investigate if there always exist two
independent eigenstates of O _, in the case that ¢#0. To
that purpose, let us multiply each of the defining equations
(4.1) on the left with its own Hermitian conjugate. On ac-
count of the orthonormality of eigenstates we obtain

; 2p+1 _
S a2 = ; 3 10,0, %p),
i=1 -

i s P - -
Igllb“yz |2 B _2pT2<p o 1|0!;:12011:1 |p - 1>'
(4.12)
These equations, together with (4.2), (4.3), and (4.11), yield a
unique solution for the unknowns |a\’_,|and |6 ,],

({ = 1,2). Solving the system explicitly for the [a\ ,]’s,
namely,

|am '2 24 P (p I)Z(ZP + 1)2
2p =3I
X{—p—29)(24p —g)+ p — 1Vp* +p — V)]
+ oo — 1P —29(p — q)1yT }, (4.13)
a? | = PS(P —)2p+ 1)y

2p =3I
X {p — 24)24lp — g) + o — 1P +p — 1))
+ {pp — ¥ ~29p — @)}/ T}, (4.14)
the |b\)_, ’s immediately follow from (4.11). Note that the
right hand sides of (4.13) and (4.14) go over into each other on

replacing \/ I" by — /I" . Next, it can be easily verified that

|a,’_, |, and hence also |6}, |, becomes equal to zero if
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2, |2 reduces to

p—-2
a5 |* =24p°(p — 1P(p + 1)(p — 2)(2p + 1)/(2p — 3),
(g=1). (4.15)
Since the eigenvector which we labeled as |p — 2,(1)) vanish-
es identically forg = 1,the O _, eigenvalue s, in this case,
given by the expression (4.9) for A|?_,, which reduces to

Ay 2= \602p ~Tp +p—8), (g=1). (4.16)

This expression agrees with formula (1.4.15) if in the latter k
is replaced by one.

q = 1, whereas [a

5. EIGENVALUES OF THE STATES |[p — 3

According to the resulis obtained in the previous sec-
tion we shall from here on assume that g{0,1}. There are
three possible ways to define a [p — 3) state by means of an /-
lowering shift operator action upon higher angular momen-
tum states, namely, by O 7% [p — 1), 0 ', |[p — 2, (1)),
and 0, ', |p — 2, (2)). However, Eq. (I 2.8) applied on the
|p) state immediately shows that at most two of these three
actions can give rise to independent states. Hence, we set

0, 5\lp—1) =a)) 5lp—3,1)) +a|p ~3,2)),
p~—12 LD - 2’(”) = b(p”— 3 [P - 3,(1)) + bi,z'_3 [P - 3’(2))v
O, Llp~22) =c)L1p = 3,(1)) + L5 lp — 3,2)),

and the action of Eq. (1.2.8) upon |p) produces the following
relations:

2600 + 1)2p + platp — 4)/(2p — 1)]'all_,
=a) ,69_, a2 24, (i=12), (5.2)

where Eqs. (3.3) and (4.1) have been used explicitly. Next, if
we act with Eq. (1.2.5) upon |p — 2,{i)), i = 1,2, we obtain

\/6@ + 1)(2p — 3)[(p+ 2p + o — 29) + 6T ]b‘,f‘,3
—p—-1)2— 140 b8,

6 LT~ 100, — 2, =0,
(i=12) (5.3)
and
J60 + 1120 ~ 3\ + 1)(2p + 1)p — 291 — 6T 10,
—p—12p— IAY i,
_ {p-2) _ +1 . .
65— 0, alp = 22)e;, =0,
(i =1,2). (5.4)

A first problem is to find general expressions for the matrix
elements of O ' ', which occur in (5.3) and (5.4). These can

(5.1  be obtained by inverting Egs. (4.1), i.e.,
J
p~ 10, Lp—2(1) = @ - 110" ;0 _21P>b L, — p— 1l0p+~l20p‘~ll - l)df).z
p—2 ’ a(l b(z, _am b“)
2 o e {5.5)
(p — 1‘0p+712 lp _ 2’(2» - (P - 1]0;‘4120 - 11 '_P - l)a“] , — (p — 1l0p+—120p;2lp>b;,l)_2
ab p® o _ M
p=2"p-2 p~2Yp—2

and by substituting herein the matrix element {(p — 110 ;"!,0 ', |p — 1) as given by (4.3) and the matrix element

(p—1]0}

which reads

(p—~10,"1, 0,77 p) =48 p— 1)’(p+ 1)(2p + 1)(p —~ 29)[a(p — 9)/(2p —
Expressing also the coefficients b)_, (i =1, 2) in terms of thea)

_',0,*|p) by its expression, which we can strarghtforwardly calculate from the action of Eq. (1.2.6) upon |p) and

1Yz (5.6)
,’s as dictated by (4.11), Eqgs. (5.5) can be transformed into

As a next step, (5.7) is substituted into (5.3) and (5.4) and the a¥_ ;’s are expressed in terms of the 5% _ ,’sand ¢

of Eq. (5.2). By this we arrive at

[J6lp -+ 170 + 1)2p — 3)p — 24) + 66(p + 1)2p — YT — p — 12p — AP, 16 , —

[io~ 290y — (0>~ 79 + 70 — 2) — 4palp — @) [

Dby +a)) o) 3 ]1=0,

T an T
J x [p— 29y —0* = 7p* + Tp — 2) ~ 4pglp — g)], .
0 11011, Jp — 2,03y = 24 Z= 1o + 113 + Vlglp — a/2p — '
a(21 2\/1‘
| x[(p—zm\/?ﬂf~7p2+7p—2)+4pq(p—q)].

,’s by means

12 6 p(p )
J6 N

(i=12) (5.8)
- plp—12

[y6lp + 1720 + 112p — 3)p — 29) — 6J6lp + 1)2p — YT —(p — 1)2p — 1A Y3 1 + 126 LE 2L

x[ip— 291y + > = 79> + 7 — 2) + 4pqlp — 9} [a
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p-2b p—3 +(1§o2'_ zcg)ﬁsl =0, (=12 (5.9)
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The system (5.8)—(5.9) of linear homogeneous equations with respect to the b ,’s and c_ ,’s yields a solution for these
unknowns, which differs from the zero solution, if A _; and A2, are the roots of the following quadratic equation:

/1’~2J6(p+3)(2p—1)(p 294 +6(p+1)2p—3)(p—22p + 159" +2Tp — 54)
—49(p—q)2p* + 11p —3)] =0. (5.10)

Hence, we can make the choice

{ng3 = \/E[(p +3)2p — 1)(p — 29) + 6\/;1—]’

6 4 (5.11)
@, = J6lip+3p— 11p— 20— 64 ],

where

A=3(p—1p+1)2p~3)+p¥p -2 (5.12)
It has to be noticed that in order to arrive at the closed expressions (5.11) for the O] _; eigenvalues, the explicit forms of the
al) ,’sandb?_,’s (i = 1,2) were not needed. Indeed, these coefficients, although they occur at many places in the intermedi-
ate steps, disappear in a natural way when the quadratic equation (5.10) is set up. If this property should turn out to be
generally valid, it would mean that eigenvalue calculations can be carried out independently from the complete eigenstate
construction. Hence, we believe at this point it is needless to evaluate explicitly the coefficientsal!_;,6_; andcl_, (i=1,2).

6. EIGENVALUES OF THE STATES | p — 4)

Our final purpose in the present paper is also to derive closed expressions for the O, _, eigenvalues. This problem is
particularly interesting, since for ¢ > 3 one encounters for the first time a case of threefold /-degeneracy. Four /-lowering shift
operator actions can account for the definition of | p — 4) states, but Eq. (I.2.8) applied upon | p — 1) shows that at most three
of these states can be independent. Hence, we set

(0,72, p—2,(1))
=d) Jp—4(1) +al | p—42) +a. | p—43),
_—22 ‘ P— 2,(2])
=6 P =41+ p—42) +65 1 p—43),
{ (6.1)
p—]lp—3 (1)
= Jp =41+l p—42) + i p—43),
p—JIp 3,(2))
L =4V p—40)+dP p—42) +d} .| p—403).

Furthermore, Eq. (1.2.8) actingupon | p — 1) gives a first set of relations among theal!_,’s,6Y_’s,cl_,’s,andd)_,’sif
we take into account (4.1) and (5.1), i.e.,

b al_, +bP b0 =a) ), +al dP_,, (i=123) (6.2)
Let us recall that so far we have no explicit knowledge of the coefficients @’ , and al ;.

A second set of relations can be formed as follows. If we let Eq. (I.2.7) act first upon | p — 2,(1))and thereafter on
| p — 2,(2)), then multiply the first equation witha!’ , and the second witha!?_,, and if we finally take the sum of both, we can
already take advantage of (6.2) to find, with the he]p of (5.2), that

(p—3)p— 4[’ip zal)»za( +,{(2) 2‘7!2 25?—4 —(P—1)(P—2Hff’~4[0§,”_20,‘5’~4 +a;;2)-2bg)-4

- 12\/6(217— SNp+1)p2p+ Diglp—q1/(2p — NI [bYL a) o + 67,67 ]=0 (i=123) (6.3)

Note that these relations involve only ¢ _, and b%)_, (i = 1,2,3). Consequently, if we can manage to find a second set of
relations in these unknowns, the eigenvalue problem will be reduced to that of sclving a determinantal equation. The construc-
‘tion of such a set is far from trivial and goes as follows.

We let Eq. (I.2.5) act upon both | p — 3,(1)) and | p — 3,(2)),

[pp K oy —(p— 2020 — 3RV, 11 p — 40) — (6“’ 2)32’ 0,10, (p—3,1) =0,
(6.4

[P2p =540 3dY . —(p—2)2p =310 _d0 _,]lp—40)) — %—__7)32)—0;_220;_‘3|p -3,2) =0

Inorder to analyze the action of the remaining shift operator product upon | p — 3,(1)) and | p — 3,(2)) the latter states are, on
account of (5.1), rewritten as
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¢ 30, p—2(1) ~ b7 50,7 p—2,2))

lp—3,0) = ,
bylal, —bylacl, (6.5)
lp—3,2) = — 630, Llp =200 +6,1,0, | p—22) :
p ’ - bll) C(2) _ b(z) o g
p—2%p—2 p—-2%p—2

After the substitution of (6.5) into (6.4), it is seen that we need to know how the triple product 0,0 p+_‘3 0, !, affects the
states | p — 2,(1)) and | p — 2,(2)). To this aim we split from this product the part 0" ',0 ', whose actlon upon a

| p — 2,{i)) state (i = 1,2) can be immediately expressed in terms of the action upon the same state of the product operator
0, ',0 ', Indeed, Eq. (1.2.3), when applied to | p — 2,(i))

p-2"

(1—12) gives
(—pﬁ%ﬂ 0,550,711 p — 2,(0)) = 54(p ~ 17 p — 272 — 4L + 1) p — 2,0
—2p— WA LR p -2y + 2RZHE=H g, oy, (i=12) (6.6)

(p—1)

As a next step we notice that the action of the shift operator 0", upon the states | p — 2,(i))(i = 1,2) has already been
determined in (5.7), whereas the afterward action of O ,'; ) on | p — 1) is directly contained in (4.1). Finally, O ,22
lp—2,(1))and O~ %, | p — 2,(2)) are immediately read off from (6.1). Resuming, the substitution of (6.5) and (6. 6) into (6.4)
and the consecutlve use of (5.7) and (4.1) lead to the following relations which no longer contain shift operators:

(p—3) 1

(p—Np+1) b;“—_%chJ —b(pz) c}la

2) bgll ] 2) ,bi,”_z (9 i
X C(pk3 Aa 4+B b _ 4 —bp”:; B a(T—apW4 +A bp,‘; :0)
a

p72 p—2

. —3 1
-5 —(p—2)2p—3AY 1 p
Lpip =357 O O N 1) B — b v

. 5P, s .
X[C(/)LJ(A‘I(/:)“‘ +Ba[’;] : bg]‘A)—b$]3(B a:*i2~ ,;)«—4 +A b _a =0 (=123}
p—-2 p—2

[p2p =350 s —(p—2)2p =340 ]V, —6

Herein 4 and B are functions of p and g alone, which after straightforward calculation can be brought into the form

A=6(p+1)p—1il2p— 2(1)/\/7:][10" —8p® + 18p" — 16p° + 14p — 6 — p*(p* +4p — 2)(p — 29)°]
+p(p—44p* —Tp* + 4p — 3) — (4p* + p + 4p — 3)p — 29)°}, (6.8]

B= — 241)2(!:“ H(p—2)(p—4)2p + Vglp —g)/(2p — '
X{/YC)lp—Up—2)20 —1)—plp— 2971 —(p—29)},

whereas similar expressions for 4 ' and B’ are obtained by the replacement of ‘/1‘ by — \/ I in, respectively, the expressions
for 4 and B. In order to achieve the ultimate goal, all that remains to be done is the simultaneous elimination of ¢!, andd {_,
(f = 1,2,3) from Eqgs. (6.7) and {6.2). By this, we end up with the following relations:

[p2p — AV s —p—22p =31 Np2p =S5y —(p =202 — 34, 116} oa) o + b7 5b) L]

_6@—3)[p(2p— M2 — o= 2 — AL,
1)[b“) xcm 3 —bf’_rscﬂ)_z]

b12l ) b(ll
i p—2 1 2 P—2 (i) (@)
-[a“‘ e (Aag‘4+B—-—m b ) —dl) b, B'E)—a"_4+A'bl .
a

p—2

p—2

6(11—3)[1721?— Syl s —p—2)02p - 315 L]
+ HpW e, —p@ il ]

p@ n
.[am o (Aam o +B—£=% p—z b(.)_“)__a[z) gbg)_3(B b[,;;z a(:)_4 +A'b' 4)]=0 (j_—_ 1,2,3), (6.9)

-3 =3 0
a,_» p—2
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Together with (6.3) these relations form a system of six linear
homogeneous equations in the six unknowns a)_,, 65 _,

(i = 1,2,3). The condition that there exists a solution which
differs from the trivial zero solution is a polynomial equation
of third degree which has to be satisfied by each of the three
eigenvalues A ! , A%, andA ) ,. At first sight it may be
expected that this polynomial equation would also contain
the coefficients @_,, b%_,,a? ;,b%_; andc_; with

i =1ori=2, and this would necessitate the explicit deter-
mination of closed expressions for these coefficients. Howev-
er, by doing the actual calculation, it turns out that they can
be simply rearranged in combinations which on account of
(4.11), (5.2}, (5.3), and (5.4) allow their complete cancellation.
If, finally, we fill in the expressions (4.9) and (5.11) for the
eigenvalues A '_, and 1) _, (i = 1,2), we arrive after very
lengthy calculations at the following polynomial equation:

A% —3,/6(p+ 1)(2p — 1)fp — 294 *
+ 18[(4p* 4 4p®> — 51p* + 94p — 63)p — 29)°
—48(4p® — 13p* + 6p + 9)]4
— 6,/61(4p° + 16p* — 107p° — 575" + 459 — 243)

X(p — 29) + 144 — 4p* + 13p° + 3p* — 27p + 27)]

X(2p — 5)p — 29)=0. (6.10)
It is, however, in general not possible to write down closed
expressions such as (2.2), (3.2}, (4.9), and (5.11) for the solu-
tions Al ,, A7 , A% , of Eq. (6.10). Consequently, for
each given pair of values of (p,g), Eq. (6.10) must be solved
numerically by means of some well-established method.
There are, nevertheless, a few properties of Eq. (6.10) and its
roots which can be traced without solving that equation
explicitly.

So, for instince, it is clear that the sum of the three
eigenvalues is \/6 times a positive integer, whereas their
product is positive if p is large enough compared to 2¢, and
negative otherwise. These facts already indicate that for ¢
values close to [p/2] two eigenvalues are positive and one
negative. On the other hand, if ¢ is much smaller than [p/2]
either three positive roots or one positive root and two nega-
tive ones are expected. But, keeping g  fixed in Eq. (6.10), each

of its three roots tends towards 2p3\/6 if p becomes very
large. Hence, if 2¢ is small compared to p, three positive
eigenvalues are most probable. All these properties concern-
ing the sign of the eigenvalues can be checked on solving Eq.
{6.10) numerically for various (p,q) representations, or by in-
spection of the extensive tables established by Judd et al.,’
listing for p< 12 and p — 2¢>0 all the eigenvalues of a scalar

2371

operator K which is related to O} by K = 07/2,/6.

Finally, it should be noticed that Eq. (6.10) admits a
complete analytical solution if p = 2¢, in which case the
three eigenvalues read

/{"D”—A =0’
i;,z',“ = 12\/6[41)3 — 132+ 6p+ 97172, (6.11)
ASL = —12/6[4p® — 13p* + 6p + 91"

Since the particular representation {10,5) has been studied in
detail by Partensky and Quesne,® their paper, which also
contains the eigenvalues of an operator proportional to O,
provides us with an immediate check of the validity of the
expressions {6.11).

7. CONCLUSIONS

We have shown that with the recently derived relations
among nonscalar shift operator products the shift operator
calculus is raised into a powerful technique for the calcula-
tion of eigenvalues of the scalar shift operator O { Indeed,
where in the region of highest possible angular momentum
values a case of double /-degeneracy became almost intracta-
ble in the usual shift operator approach, we have been able in
the present paper to give even a complete analytical treat-
ment of a situation whereby / is threefold degenerate.
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The generators of the fundamental representation of the Lie group GL{4N;r), integral N> 1, are
constructed from Kronecker products of smaller matrices in such a way that their tensor
character under the action of the (unique) full null-plane Lorentz subgroup is apparent.
Commutation relations of these tensors are given in terms of symmetric and antisymmetric
structure constants for the fundamental representation of U(N ) used in their construction.
Generators of the Sp(4V;r) subgroup are classified according to transformation character under a
U(N ) subgroup. Commutation relations of sp(4V;r) are given in terms of SU(2),,;, ® U(NV)

multiplets.

PACS numbers: 02.20.Sv

I. INTRODUCTION

Since the advent of the dual resonance model,' and in
particular the model known as the Nambu string,” some at-
tention™* has been focused upon the formal algebraic struc-
ture of physical systems composed of large numbers of boson
operators. As is well known,” the Lie algebra of the maximal
set of bilinears constructed from » bosons is the complex
form of the real algebra sp(2#;#).

Now, for the applications of current interest, it is desir-
able to arrange the elements of sp(2n;#) into combinations
which transform as tensors under a Lorentz subgroup. In the
case of an orthogonal group, such an arrangement is simple;
due, however, to the higher level of complexity of the root
diagrams of large symplectic algebras, no such simple tech-
nique exists.

Recently, Staunton® has reported a Lorentz subgroup
analysis of sp(8;r) based upon manual examination of a com-
puter-generated set of commutation relations of 8 X 8 matri-
ces constructed from 4 X 4 blocks of real Dirac matrices. The
algorithm for sp(2”;r) reported in Ref. 6, while systematic, is
quite lengthy. Further, although it can be applied, case by
case, to larger symplectic algebras, due to the necessity for
manual examination, it rapidly becomes unwieldy.

We report here a compact analysis, based upon the for-
mal properties of Kronecker products, which serves to clas-
sify the elements of any sp(4NV;r), N> 1, according to their
Lorentz tensor character under a Lorentz subgroup of
sp(4N;r). In particular, we have selected the unique, null-
plane Lorentz subgroup,’ of interest for physical applica-
tions.®* In fact, however, the analysis serves to classify the
larger algebra gl(4V;r), of which sp(4N;r) is a subalgebra.
Furthermore, since our Kronecker product construction
singles out elements of the subalgebra u(N'), the full set of
commutation relations among the Lorentz tensors of
gl(4N;r) are detailed in a form which explicitly involves the

“Research partially supported by the Research Corporation under Grant
Cl1232.

P'Partially supported by a grant from the Drake University Research
Council.

“Current address is Department of Physics, University of California at
Santa Barbara, Santa Barbara, California 93106.
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structure constants of U(XV ). Therefore, the results also facili-
tate a U(NV) [in fact, an SU(2),,;, ® U(V)] analysis of the ele-
ments of the algebra, already classified according to their
Lorentz character. These dual identifications may be of
some future interest for the construction of relativistic, bo-
son constituent models of composite particles exhibiting col-
or or flavor symmetries.

In Sec. II, we present our Kronecker product construc-
tion, and exhibit the Lie algebra. In Sec. II1, we present the
Lorentz tensor classification of the elements of gl(4V;r), for
any integer N> 1. The SU(2) ® U(N } nature of the elements of
sp(4N;r) are recorded in Sec. IV. Finally, as a particular case,
the boson realization of sp(8;7) of Ref. 6 is classified in Sec. V.

1. AN ALGORITHM BASED UPON KRONECKER
PRODUCTS

Consider the following set of four real Pauli-type
matrices:

_[1 o] _[o 1]
%=lo 1 T l1 of

0 —1 10
2=l oF PTlo —1f

The set {0,},i=0, 1,2, 3 are then a realization of the alge-
bra® gl(2;7). Let 7, = diag(1, 1, — 1, 1) denote a metric.
Then®

(2.1)

0,0; = Ao, 50} + €0 0%, (2.2)
where
o =0y + Mo + Npnf + 270070 (2.3)

Further, let the set of ¥ 2 Hermitian ¥ X ¥ matrices {4,},
1=0,1,..,N?>—1, generate5 the fundamental representa-
tion of U(V), with A, = 1/, and with symmetric and antisym-
metric structure constants given by
{ln )‘I} =dpxh (2.4a)
and
[ 4,]) = tfiAx- (2.4b)

Consider next the set of N real N X N matrices {G, |,

®© 1981 American Institute of Physics 2372



derived from the set {4, ] via G; = 4,, for symmetricA,, and
G, = — iA,, for antisymmetric A,. It follows® that the { G,}
are a realization of the real Lie algebra gl(V;r), with symmet-
ric and antisymmetric structure constants d |, and £, dif-
fering from those of (2.4) by appropriate changes of sign.'°

Finally, we define a set of 16N * real matrices {M,;;} via
the Kronecker product

M, =0,8G, 80, 2.5)

The real matrices M are linearly independent and therefore
constitute® a realization of gl{4V;r). Note that for the case
N = 1, one realizes a familiar set of sixteen real 4 X4 Dirac
matrices.

Now the matrix product of any two of the matrices (2.5)
is given by the multiplication rule for Kronecker products''

MM, =(0,8G,®0;)(0.8G;®0)
= (0,0,) ® (G,G,) &(0;0,),
and, of course
M My = (00;) @ (G,G) @ (0,0;). (2.6b)

Recall, however, that in all cases, 0,0, = + 0,04, the posi-
tive sign obtaining whenever k = i or at least one index is
zero. It follows then, upon comparison of (2.6b) with (2.6a),
that the commutation relations among the { M } can be ex-
pressed in terms of the U(V} structure constants d,,, and
Jfux» the symmetric constants being involved whenever the
accumulated sign obtained upon interchanges of the o matri-
ces in (2.6b) is negative. Substitution of (2.2) into (2.6) yields,
after straightforward algebra, the result'®

(M My ] = (@i €0 " + €0 ™07 )d 11k M 1k
+ (ao:'k.maol'z." + €0 "€0it” W 1o Mogen - 2.7)
Now the Lie algebra of GL(4N;r) is well known® and can
be recorded directly, compactly, and systematically. Our
particular, somewhat cumbersome result (2.7), however,

serves to simplify to a great extent the classification of the
elements of gl(4.V;r) according to their tensor character un-

(2.6a)

TABLE L. Generators of GL(4¥;r) classified according to their tensor char-

der particular subgroups of interest, as we shall presently
demonstrate.

lil. LORENTZ TENSOR CLASSIFICATION

Recall that, for the case N = 1, our Kronecker product
construction (2.5) yields a set of sixteen 4 X 4 real Dirac ma-
trices. Such a set includes, of course, an antisymmetric ten-

sor, S, which generates the Lorentz group. It follows that a

TABLE I1. Lie algebra gl{4V;r) expressed in terms of the Lorentz tensor
nature of the elements. S, 7, U number symmetric G, only, 4, B, C antisym-
metric G, only.

Symplectic

[pr Tf:a] =dSTU(gyaT‘£/B —gvaT:AJﬂ +ngT;(¢/a “gﬂaTgx)
+fs1a [(8a808 ~ 8128 )C* '+ €V ]

[pr v J =fsta4€ v U +dSIU(g;Aa — &va ,fj)

[T;wr us ] = fsar€ va . V +dgp (g,w v — Bva UM)

[T;uw ct ] =-/:$ATT,IV [T/.n SN ] =f:S‘AT£€pvf-IBTIB

[V vil= = f57480C  + dsy TS,

{Vs vy ]] = _fSArifyv?ﬂTz;B + dSABgyvNB

U;; vl= —fisc8..C
[CAr CB] =fABCCC .
[N, N®]) = —f,,.C¢
[CA’ Vi] =fisrV,
(N Vi]=dsUE

s
— 8ass T;u'

[CAy NB] zf;{BcN

[CAv Uﬁ] zf:mc Uf[_
[NAr Uﬁ] = dABS Vj

Mixed

[Tpv’ Ti)=dy, (g,‘a Tfa —~ 8a T;xﬁ +8us T e —8a T A
—fSAT[(guagvﬁ fgmgpﬂ)c + EyvaBN ]

[T/.w’ vil= —fs,qrf,,ya U; + dsap (g,m v —&a Vﬁ)

[pr vil= _fASTeuva Uﬁ +dASB(g;m v~ 8va VE)

[T,ws U’] = —fSTAe‘lva Va + ds1u(g,m gvaU
[T;m U ] = fanc¥, uva - Vﬂ — s (g,m gmUs)
[T;‘v’ T] - ’_f:STA Av [Tuw T] - -ATA% T:ﬂ
[T,uu CB] zfuchf [T‘w, NB] ./;Bca L TC
[Vp V:]= _fSATg/.wC +duqufv

[V;Sn UTl=fon ifuvfsrﬁﬂ + dsn/g‘“rNU

[V Ull= ‘f,wc: BTaﬁ dAasg,sz

[UA US] = _/,;STg;xvC +dASBT;L\

acter under the Lorentz group generated by T2, . Indices S number sym- [CYCo%l=fssC [CA NS =f, N

metric matrices G,, while A number those of the antisymmetric partition. [CSNA ] =fi N [NANS) = —f, “
[CA, Vﬁ] =fusc Vf [CA ] =fusrU

Symplectic Nonsymplectic [C5 V)= ~fauV [cs, U‘] f_wr(/“

i i (NL V2= —dpUS [N US|= —d,g,V"
T3 = Mg, T3 = My, N5, VT]":dsruU:,j [Ns’ U::]= —dbABVB
T§| = Mzsj T:| = Mz,«}

T3 = Mo, T = Mo, Nonsymplectic

THh = —M, Tih= =My,

TS = My, THh =M, [T,n, Tihl= -~ dips(8ua T s ~8&aTlis+8,T0, — 8.sT5)
TEO = M5, So = M40 . , _fABC[(g;uxgv/i gvuguﬂ)c + ‘nﬂﬂN ]

Zg : :Zzso I‘;: = :xuo fT,u’ V5] = —Lucf,“n UL —dyps (g,“, V-8 VL)

VIS: " is3 V! = o 343 [T;ni Ul =/asre p;n V +d431§(g;m v g\aU;

Vi' : —J;II Vi - ~3;!1 [5#\' Ca ] fAs7 T;n [T,qu ] fAsrz 1oy T

ves ve i et T

U(: : w 142 U(; = y 152 [ o Us 1= —fasrie v T s +‘5Asgg;wN

1= Moy 1 = Mgsy [U,u Uv] fsmg,uc +dsruT,w
Ui = My, U3 = Mos, (C5CTl= —f5,C* [CNT1= ~fip N
Ui= —M,,, Ui = —-M;, [NS’NT]z-/:STAC
jcv:i 1_‘:!0;{0 ;Z: MO;; [CZ’ Va] =-/-:1'ATV#T [Cs ]— —fs1a U

= 342 = —diM3g2 [N ’Vu]=dSABU5 [NS T]‘ ’_dsu/
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TABLE I1I. Elements of sp(4N;r) classified according to SU{2) ® U(N ). Superscripts denote tensor character under the SU(2) generated by S'', $?, and S *.
Subscripts denote transformation properties under the U(N) generated by {H, F9}. Note, however, that 4 . 4 is a single U(N) multiplet, as are the 27 ;.

H=V)= — My, Fi=C"=My, F§=Vi= — My, S#0
S'= ~T% = —M,, F\=Ut=M,,, Fls=—T§3—_Mzs1' S#0
§P= ~TS = — My, Fi=U3=M,,, F§=_T§‘_—M253’ S#0
S'=~Th=~My, Fi=Ui=—M,y,, Fy=—Th= Mo, S#0

4,4 =Ug= -M,,
nl+s= Tfo= ~M,
-{22;5: Tf()leSl
nlps = Tfo =My,

Lorentz subgroup of GL{4N;r) can be immediately identi-
fied, by one-to-one correspondence, from the set of sixteen
4N X 4N Kronecker products of the form o; ® G, ® 0, since
for any N, G, = 4I. In particular, we choose to consider the
null-plane’ set

Sz3 :Mzon Sio= _Ml()37
S3l = Mzm’ Szo = Ml()l’ (3-1)
S = Mop, S3o = My

The simplicity of our approach lies in the elemental ob-
servation that since, for all 7,

{G()r Gl} = Gl) [Go’ Gl] =0, (3~2)

commutation of the S,,, of (3.1) with any of the M, will not

(73%

alter the index 1. In particular, we obtain, from (2.7),

[MK)j’ M, ] = (Ao ~m60jlfl + €oix -maoﬂfl)Mmln‘ (3.3)

Further, since in the set of 16 4 X 4 Dirac matrices there is

found (neglecting parity) one antisymmetric tensor of second
rank, two vectors, and two scalars, it follows that exactly the
same number and types of Lorentz tensor quantities will be

the 4 X 4 real Dirac matrix with the same indices / and ;.
Let, for each value of the index I, antisymmetric Lo-
rentz tensors of second rank be denoted T Lv, and, by anal-
ogy only since we are neglecting parity, vectors of polar (axi-
al) type ¥}, (U.), and scalars (pseudoscalars) C’' (N ')
respectively. Further, for later convenience, let the set of
indices I be partitioned into two sets numbering the symmet-
ric and antisymmetric elements of {G, }, and let the indices
S, T, U number those of the symmetric partition, and 4, B, C
those of the antisymmetric partition. Finally, let the null-
plane Lorentz generators of (3.1) be denoted S, =T,

vt

Then the elements of gl(4.V;r) are classified according to their
Lorentz tensor properties in Table I. The commutation rela-
tions among these generators, again in terms of their Lorentz

tensor character, are exhibited in Table II.

1V. sp(4/N,;r) CLASSIFICATION UNDER SU(2) 2 U(V)

Fromamongtheset {M } of 16N *real4N X 4N matrices
we may identify a subset of 2¥ (4N + 1) matrices I” which
have the 2V X 2N block form

found in the N> 1 cases for each value of the index 1. In £ [Z S @.1)
. - = ~ .

particular, the tensor character of each M ;; is exactly that of S _zTp

TABLE IV. Lie algebra sp(4V;r) transcribed to reflect the SU(2) ® U(N ) classification of the elements (i,j,k = 1,2,3 only).

(#.57=0 [H.F}] =0 [H#.F;] =0

(S, 8] =€, S* [S,F{]1=0 [SFi]=€uF}

[F‘?vF?]Z/pIJKFlI)( [F(;,FlllzflJKF‘K

[Fi, Fi]l= 5:;fm<F(l)< + eijkdl!KF‘;(

[H’A;A]ziA;A [Sl'!A+A]=O

[Ff;vdo,li]:fAncA+(' [ngdiA]:idSAﬁATB

[F’A’Aoﬂlz_d/iﬂsnlys [F‘st+A]=ifsu'n‘x'r

[H"QizS]ziniTs [S’"’{)/"S]=gukﬂ"*5

[F(l,.(l".s]=f“,—ﬂ'(,- [F(S)‘"Q‘tllz idsrun'TU

[F’Avnj~ sl= S;d sl 0 F eijkaSTn At r

[Fsd2, 1= Fb /548 L 4 + €4dsry? *u

[A«.4‘A¢B]=[A 4 B]=—'./:4IJ(‘F‘()_'

[A oAvA H] = _dAIISFf;‘

[-Qlosi‘A.A]:[n1 st A]Z_—dSABF’B

[ﬂ" 54 4 ] = fsurF'y [-Q‘ s A 1A ] = — foarF!

[-(ll¢ P A ] = [”' s 42 r] = - atl\fS"'AF?! - eijde'ruFt'

['Oln 50 42 1'] = = 5,,‘151‘(/17(1’/ + f,/t\.fsrAF;
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where S and Sare any two real symmetric matrices, Z is any
2N % 2N matrix, and Z " denotes the transpose of Z. The set
{f ] is a realization® of the Lie algebra sp(4V;r), and its ele-
ments are enumerated in Table I, in the column labeled sym-
plectic. The Lorentz tensor classification of sp(4V;7) is there-
fore recorded in Table I, and its Lie algebra similarly
classified among the entries of Table II.

Additionally, the matrices I have the important prop-
erty

F = 4M200F TM200,

which permits their use to construct boson realizations of
sp(4/V;r), for any integer &, as detailed below in Sec. V.

Included among the set {7} is the set of matrices
{v;, C*}, which generate'2 a U(N) which commutes with
the SU(2) generated by the space-space components of the
Lorentz tensor S,,, =7T,,.

The symplectic matrices I are classified according to
their transformation character under SU(2) ® U(¥ ) in Table
II1. The matrix ¥§ isa scalar under both SU(2) and U(N ) and
is specially denoted H. Other entries in Table III are identi-
fied according to their scalar or vector character under SU(2)
by their superscripts, with subscripts indicating their U(V)
multiplet character. Commutation relations of the sp(4.V;7)
matrices according to their SU(2) ® U(N ) character are re-
corded in Table IV.

For sp(2n;r) with odd #n, the construction and analysis

above do not apply. However a construction using the subset
of

M,=0,2G,

That obey (4.2) with M,, instead of M, yields a u(n) subal-
gebra {H, F;} andamultiplet 2 , , with the same commuta-
tion relations as {H, °F,, 2 s 3

(4.2)

V. BOSON REALIZATION AND SU(2) x U(2)
CLASSIFICATION OF sp(8;)

Consider the sets of # real variables ¢ and associated
canonical conjugates 7, 7 = — id/dq. The maximal set of
bilinears constructed from these 2x# boson operators form a
realization of the (complex) Lie algebra of Sp(2#;r). For n
even, the analysis of the preceding sections applies.

For n = 2N, form the column matrix

Q = col(g; 42: s Gars 1> N2s ooor Moy, (5.1)
and denote the entries Q,a =1, 2, ..., 4N. Then
[Qa’ Qb] = — 21'1‘4200’ (52)

where M, is defined by (2.5).

Now Staunton® has used a result of Browne'? to show
that the self-adjoint'* operators

=0 T(Mz( in)Q! (5-3)
where the matrices I are those satisfying (4.2) and are listed

in the symplectic column of Table I, satisfy for any N the Lie
algebra of Table I1 (with, of course, a factor of the imaginary
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unit appearing on the right hand sides). The Lie algebra
sp(8;r) i.e., N = 2, has been Lorentz classified in Ref. 6, and
the special representational indentities obtaining for this bo-
son realization have been detailed as well.

Our analysis permits these results to be extended to in-
clude a classification of these operators according to
SU(2)spin ® SU(2);s05pin» for example. Identification with the
notation of Ref. 6. yields'>

V?=Au, Ué:BH, Vf,l: "
Ve,=D,, T, =E,, T, =F,, (5-4)
T8, =S, N*=T, C’=T,

and the SU(2) & U(2) classification is that of Table III, with {z,
J» k cyclic 1, 2, 3 only)

H=A4, F?:DO,A F(2)=T2, F(;:CO,
S'= =S8, Fi=—F,, F;=8B, F;=—E,,
R (5.5)
ni+0=Sx0: ‘Q'l+l= 10’A+2=BO’ ﬂl*.3=E’o’
a7 ,=4, 0_,=D, 4,=T, 2' ,=C.

The commutation relations follow easily upon substitution
of the U(2) structure constants into Table IV.
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A purely algebraic infinitesimal method for obtaining multiplicity-free Wigner coefficients is

presented. The method is applied to obtain analytic expressions for the complete matrix elements
of all O(n) generators. Moreover the structure of these matrix elements in terms of reduced matrix
elements, Wigner coefficients, and reduced Wigner coefficients is made explicit. By comparison
with the Wigner-Eckart theorem explicit analytic expressions are obtained for the fundamental
Wigner coefficients of O(n). Finally the results are presented in a form which is directly analogous

with the corresponding results for U(n).

PACS numbers: 02.20.Sv

I. INTRODUCTION

In the literature two distinct, yet intimately related, ap-
proaches to a general study of the classical groups have
emerged. Firstly, there is the algebraic infinitesimal ap-
proach which exploits only the generators and their commu-
tation relations. This approach has its origin in the pioneer-
ing researches of Casimir, !> Van der Waerden,? and Racah.?
Secondly, there is the integral approach as expounded in the
classic works of Weyl.* The methods of Weyl have proved a
powerful tool in group theoretic applications to physics and
have been applied, in conjunction with Schwinger’s boson
calculus,’ by various authors.®

From the point of view of applications to physics the
principal problems to be solved are the complete determina-
tion of the states of an irreducible representation and the
explicit determination of Wigner (or Clebsch—-Gordan) coef-
ficients. Probably the first major step in this direction was
made in 1950 by Gel’fand and Zetlin” who constructed, with
a full set of labels, a complete set of basis vectors for the
irreducible representations of the orthogonal and unitary
groups. The matrix elements of the group generators were
also given initially by Gel’fand and Zetlin’ and later by Baird
and Biedenharn® who made an important contribution by
revealing the structure of the matrix elements (i.e., a product
of a reduced matrix element and a Wigner coefficient). The
evaluation of all multiplicity-free Wigner coefficients of U(#n)
was subsequently given by Biedenharn, Louck, Baird, and
Giovannini.® Although much work has been done on O{n) by
several authors,'!? the complete program followed by Bie-
denharn, Louck et al. for U(n) has never been carried out for
O(n) (although it seems evident'' that it will extend to the
orthogonal group with appropriate modifications).

The approach employed by Biedenharn, Louck et al.
relies on the group theoretic methods of the Young tableaux
and Schwinger’s boson calculus. These methods are inher-
ently integral in nature as are the techniques of Gel’fand er
al.In the 1960’s an alternative infinitesimal approach to

*Present address: School of Physical Sciences, The Flinders University of
South Australia, Bedford Park, South Australia, 5042.
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these problems was developed by Nagel and Moshinsky'* for
the unitary groups and extended to the orthogonal groups by
Pang and Hecht'# and Wong.'* This approach relies on rais-
ing and lowering operators which are constructed from poly-
nomials in the group generators. Gel’fand—Zetlin basis states
may then be written as a product of lowering operators act-
ing on the state of highest weight thus enabling, in principle,
a complete determination of the group generator matrix ele-
ments. This approach has recently been given a more elegant
treatment'®'” by making use of polynomial identities satis-
fied by the infinitesimal generators of the group. Although
such raising and lowering operators are useful for various
applications we feel however that for obtaining the matrix
elements of the group generators, and the more general and
related problem of obtaining the multiplicity-free Wigner
coeflicients, this procedure is somewhat involved and under-
mines the simplicity apparent in the final results.

In recent work by the author'”-® it was shown how one
may obtain the complete matrix elements of the group gener-
ators algebraically using the concept of simultaneous shift
operators which shift the representation labels of the group
U(n) and each of its canonical'® subgroups in a certain pre-
scribed way. The principal tool in this approach is the con-
struction of projection operators using polynomial identities
satisfied by the infinitesimal generators of the group. The
matrix elements of such projectors were shown to complete-
ly determine the fundamental Wigner coefficients of U(n).
Moreover an expression for the reduced U(n):U(n — 1)
Wigner coefficients (or isoscalar factors} was given as a
U(n — 1)-trace of a polynomial in the U{n) generators. This
operator is an element of the universal enveloping algebra of
U(n) which commutes with all the U(n — 1) generators. Its
eigenvalues determine the squares of the reduced Wigner
coefficients. This reduces the problem of obtaining reduced
Wigner coefficients to an algebraic problem of obtaining ei-
genvalues of a U(n — 1) Casimir invariant and provides a
systematic method for their evaluation. The principal value
of this approach is that it generalizes to arbitrary multiplic-
ity-free tensor products and to more general groups. In par-
ticular it enables a treatment of the orthogonal group in ex-
act analogy with the unitary group.
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In this paper we apply the techniques developed in Refs.
17 and 18 to obtain the matrix elements of all O(n) gener-
ators. As for the U(n) case the O(n):0(n — 1) reduced Wigner
coefficients are obtained as an O{n — 1)-trace of a polynomi-
al in the O(n) generators. Furthermore the general funda-
mental Wigner coefficients are obtained in exact analogy
with the U(n) case.

We begin in Sec. II by outlining our procedure for an
arbitrary semisimple Lie group. In Sec. III we obtain the
reduced matrix elements and reduced Wigner coefficients of
O(n). In Secs. IV-VII the structure of the matrix elements of
all O(n) generators is determined.

il. MULTIPLICITY-FREE WIGNER COEFFICENTS

Since our approach is primarily based on the construc-
tion of projection operators using polynomial identities sat-
isfied by the infinitesimal generators of the group we present
a brief summary of results in this field.

Let G be a semisimple (compact) Lie group with Lie
algebra L. Let H be a Cartan subalgebra of L, H * the dual
space to H, and @ C H * the set of roots with respect to the
pair (L .H}. Let & * C @ be a system of positive roots, § the
half sum of the positive roots, A the set of integral weights,
and A * CA the set of dominant integral weights. Let ( , )
denote the inner product induced on H * by the Killing form.
Finally let U denote the universal enveloping algebra of L
and let Z be the center of U.

Now let V(A ) beafinite dimensional irreducible module
over U with highest weight AeA * and let 7, be the represen-
tation afforded by ¥ (1 ). Following K ostant'® we consider the
map

dU—End V{d)e U
defined for xeL by

dxj=m;(x}®1l+1®x,
which we extend to an algebra homomorphism to all of U.
For example, if x,yeL then

d(xy) = d(x)aly)

=m, ()8l +mi(y)ex+mx)ey+ 18xy.

If z is an element of the center Z of U we consider the
operator 4 (z) defined by

Az = —i[dz) —mz)e 1 — 1@2z]
which may be viewed as ad X d matrix (d = dim¥V (4 )} with
entries from U. When acting on a finite dimensional irredu-
cible module V{u), ueA *, over U the matrix 4 (z) may be
written

A@)= —}[m 8w, (s —m(2)® 1 — lem,(2)],

whichisanoperatoronthetensor productspace ¥ (4 ) ® ¥ (u).

Let us write the Clebsch—-Gordan decomposition of
V(1) ® V{p)intoirreduciblemodulesover Uaccordingtothe
standard convention

Vid)eVip)= & myV(v) (1)

where m(v) is the multiplicity of 7, in 7, ® 7, and m(v)V (v)
is shorthand notation for
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We now note that on each space ¥V (v) occuring in (1) the
operator A (z) takes the constant value

a,lz)= — (&) — xa(2) — x,. (), (2)
where v, (z), veH *, denotes the eigenvalue of the central ele-
ment z on ¥ (v). From this it is an easy matter to deduce that
acting on the space ¥ ( u) the matrix 4 (z) satisfies the polyno-
mial identity

[[4 @ —a.lz)=0. (3)

We remark here that if A,,...,4, are the distinct weights
occuring in V(4 ) and if v is a highest weight occurring in the
decomposition (1) then v is necessarily of the form
v=pu + A, for some i = 1,....,k. Moreover if the weight 4,
occurs with multiplicity n(i) in V(4 ) then we necessarily have
m(v)<n(i). In particular if the weights occurringin V(4 ) have
unit multiplicity then the tensor product space V{4 }® V' (u)

(for arbitrary ueA *) is multiplicity free.
In the special case where z = C, is the universal Casi-

mir element the identities (3) reduce to the identities encoun-
tered recently by several authors for the various classical
groups.?®=2? In this case the matrix 4 may be expressed in the
form

A=~ 3 Tk, @

r=1
where {x,...x, } (1 = dim L )isabasis for L and {x',....x"} is
the corresponding dual basis with respect to the Killing form
on L. Thus in this case the matrix A4 is a matrix with entries
from L. Invariants of higher order than C, may be con-
structed by taking traces of powers of the matrix 4

I, =trA™.
The 7,, are elements of the center Z which (at least for the
simple Lie algebras) generate the center (although they are
not of course all algebraically independent). Their eigenval-
ues are given by the explicit formula??

& e A+ 6a)
Xulln)= Y nla)” T —m—

i=1 aeP *
where A ,,...,4, are the distinct weights occurring in V{4 )
with multiplicities n(1),...,n(k ), respectively, and where ; de-
notes the polynomial function

a;u)= — i[XquAi(CL) _X,u(CL) “XA(CL)]
= HAA +26) — §A,,20u + 8) + 4,).

It is easy to show that there exists an element z of the
center Z such that the numbers y, (z), for each highest weight
v occuring in the decomposition (1), are all distinct. [In par-
ticular if ¥'(4 ) is the fundamental vector representation of
one of the classical Lie groups then the universal Casimir
element will suffice.] By virtue of the polynomial identity (3)
one may then construct a set of projection operators

A —
P [V] = H (_—i ) ’
p#v \ A, — ap
where 4 = 4 (2). Since the matrix A takes the constant value
a, = a,(z)onthespace V' (v)it follows that the projector P [v]

[m(v) times].
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takes the constant value 1 on the space ¥ (v} and zero on the
remaining ¥ (p}, p#v. Thus P [v] projects V(1) V (u) onto
the subspace m{v}V {v). It follows that the matrix elements of
the projector P [v] between basis states in the space V (1) are
bilinear combinations of Clebsch-Gordan coefficients.
To be more explicit let ef,....,e} and €4,...¢4., d

=dimV{i),d' = dimV (u), be orthonormal bases in the
spaces V(4 ) and ¥ (1), respectively. In order to distinguish
between the equivalent representations occurring in (1) we
provide them with an additional index r; ¥ (v,7),

r = 1,...,m(v). With this convention the decomposition (1)
may be written

Vil e Viu) =

miv)

& ea V(v 7).

Letel™,....ef0 , d (v) = dimV (v), be an orthonormal ba-
sis of the space ¥ {v,7). The basis vectors e,” form a basis for
the productspace ¥ {1 ) @ ¥ (u) whichis related to the product
basis ! ® ¢ by the change of basis transformation

&l =3 (det g ed .
i

The elements {¢},e/ | e;") of this {unitary) basis transforma-
tion are Clebsch~Gordan coefficients.

Now let ¢} and e be two arbitrary basis states in the
space V(4 ). Since P[v] is a polynomial in the matrix A4 it
follows, since A is a matrix with entries from U, that the
entries

Pv); = {|Pv]|e)
of the matrix P [v] are well defined elements of U, On the
other hand viewing P [v] as an operator on the space

V(A )® V(1) we see that the matrix elements of P [v]’, be-
tween basis states in the space ¥ (u) are given by

(e |P VY, |er) = (el | PIv]|eeh),
where |}, ¢/') is bra-ket notation for the product state ¢/ ® /.
Introducingacompleteset of states forthespace V(A )& V (1)

wehave, usingthefactthat P [v] projects V(1 ) & V (u)ontothe
subspaces V (v),

<e“|Plv1,|e“>—i iu ¢ ey (el dery. ()

r=1q=
In particular putting i = j, k

v diy

@Potiley =3 3 et e
r=1g=

If, moreover, the module V' (v) occurs with multiplicity 1 then

we may write (dropping the multiplicity label)

(@ |PIv],|et) = i (et | ) |2 (6)

In many cases the nght-hand side reduces to a single
term enabling an evaluation of certain Wigner coefficients
(up to a phase) by an independent evaluation of the left-hand
side. An immediate application of formula (6) is the matrix
element of P [v]’, between the maximal state ¢ in ¥ (). Sup-
pose we choose an orthonormal basis for the {reference] re-
presentation ¥ {4 ) to be a weight basis. Recall from our pre-
vious remarks (see also Refs. 19 and 23} that the highest
weight vof V(v)is givenby v = p + 4, for some weight 4, in

= [ we obtain
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V(4 ). Now let ¢} be a basis vector of wieght A, so that the
tensor product state e} ® ¢ has weight v =u + 4,. Then,
according to (6), we have

(#|P ) ey = g’ (etet [ e} ]2,

Since ¢/ ® ¢ has weight v which is the highest weight occur-
ring in ¥ (v] it follows that the only surviving term in the
above sum is

<eu|P {v}, lep) = ‘(eu’ef l ey> |2'

This Clebsch-Gordan coefficient is important for the nor-
malization of generalized raising and lowering operators for
the group. This application is discussed more fully in Ref. 17.
[Note that although a weight basis is required for ¥ (1 ) we do
not require a weight basis for the spaces ¥ (u) or ¥ (v)but only
that the maximal weight vector belong to the basis. It is also
notnecessary that the weightsoccurin ¥ (4 ) with multiplicity
1]

More detailed information may be obtained by making
use of a suitable chain of subgroups for G. In particular if the
group G admits a canonical chain'? of subgroups then all
(multiplicity-free) Wigner coefficients may be obtained di-
rectly by this method. This procedure has been illustrated
for the unitary group in Ref. 18. It is our aim here to general-
ize this technique to obtain the matrix elements of all O(n)
generators. We remark however that in order to obtain the
matrix elements of the group generators one need only con-
sider tensor products of the form V' * ® V{u), where V * is the
carrier space for the fundamental contragredient vector re-
presentation. Thus it suffices to apply only the vector identi-
ty (and its adjoint) for this problem.

Ili. REDUCED MATRIX ELEMENTS AND REDUCED
WIGNER COEFFICIENTS FOR O(n)

Without loss of generality we may take as a set of gener-
ators for O(n) the operators &, (7, j = 1,...,n) which satisfy the
relations

a; = —-o, la)a]=6; —8af -6 +8aj,
and the Hermiticity property

(@) = o
This corresponds to the choice of O(n) metric g; = 5.

As for U(n) the generators of O(n) for naturally into an
n X n matrix a = (a’;) which is a special case of the matrix 4
appearing in Eq. (4) for the case where m; = 7* is the funda-
mental contragredient vector representation. Associated
with the matrix a is its adjoint @ with entries

a'= —da,.
Polynomials in @ and & may be defined recursively accord-
ing to
m+ l)iA

(a = ([@")af = ai(a™)

@+ = (@) a = ajan)’

The representations of O(r) may be labelled by the
maximum eigenvalues of the commuting Hermitian
operators

2r—1

—ias Y, r=1,.4,
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where
h~[l’_]_{%n n even,
21 Wir—1) n odd.

The set of weights may be identified with the set of all tuples
of the form {4,,...,4,). Welet 4, (r = 1,...,4 ) denote the fun-
damental weights with 1 in position r and zeros elsewhere.
We define weights 4, (r = 1,...,n) by defining A, forr> A
according to

A,=—-—A,,+l,,. (7)
For the case of odd n = 24 + 1 we have also the zero weight
4, ., =0 [which is consistent with Eq. (7)].

On a finite dimensional irreducible module V(4 ) with
highest weight A = (4,,...,4,, ) the matrices a and & satisfy the
polynomial identities

[l @—a)=0,

r=1
Il @-a)=o
F=

where the roots @, and &, are given by
a=a, _,=A,+n—1-y,

where we define labels A, for r> 4 according to
Aniior=Y—4,, r=1,.,h

with

Avir =1, for n=2h+1 (8)

As for the U(n) case one may construct projection oper-
ators P [r] and P[r] by setting

Plrl= H(“‘“’ )

I #r ar—al

. i—a,
Plrl= ,I;I,(a,—a,)'

The matrix elements of these projectors in unitary represen-
tations of the group determine the fundamental Wigner coef-
ficients of the group. Following Ref. 17 let [¢,) and [, } be
two arbitrary Gel'fand basis states in the space V(1 ). As a
special case of formula (5) (noting that the tensor product in
this case is multiplicity free) we have

A A
(irenis)
RE(A'I_O—A—A» </1-A, ]6_4)

G\ il w) i
where |,'®) constitutes an orthonormal basis for the contra-
gredient vector representation (i.e., the row vectors with 1 in
the ith position and zeros elsewhere) and where we define
weights A, for 7> hin accordance with (7). Similarly we have

A, A >
Plv],
(miPenig,
'Z(/I'IO/I+A,></I+A, 101) (10)
A L ) W 1"
where |;°) constitutes an orthonormal basis for the vector
representation (i.e., the column vectors with 1 in position i

{9)
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and zeros elsewhere). We remark that the basis chosen here
for the vector representation differs from that used in Ref. 17
since in the latter the basis states are weight states as distinct
from the Gel'fand basis used here. As a special case of Eqs.

(9) and (10) we have
A . A _ A _IE A _Ar>
<(v)|P[’] " l(v')) =) <

2

’

M nl W
. {11)
A AN ,1‘10/1+A,>2
((V)IP [r1. '(V))“‘S‘“””" <(v)’n (v)

Thus we see that the operators P [r]”, and P[r]," are
O(r — 1) invariants which determine squares of fundamen-
tal Wigner coefficients. Turning our attention to the group
Ofn + 1) we let B denote the O{n + 1) matrix whose (i, j) en-
try is the genrator o, (i, j = 1,...,n + 1). Following our U(n)
notation we write the characteristic identity satisfied by the
matrix £ in the form

n+4 1

I 8-5)=0.

r=1
where the 3, take constant values on a finite-dimensional
irreducible representation with highest weight A given by 3,
=A, + n — r. In a similar way we define the adjoint matrix
B whose roots are given by &, =3, +2_, Wedenote the
Of{n + 1) projection operators by
oik)— H(B B )
I#k Bk - ﬂl
Olk)= H(fg b )
ik \ Br — B
The operators Q [k ]"*',, and 0 [k ],,,"* ' are the
O(n + 1) analogs of the operators P [#]", and P [r],” whose
matrix elements are squares of Wigner coefficients.
Following our U(n) notation we denote the O(x) invar-
jants Q [k 1"+, ., and @ [k],,,"" ' by C, and C, re-
spectively. Applying the identities satisfied by the matrices a
and S (see Ref. 24 and Appendix A) one may express the O(r}

invariants C, and C, as a function of the £, and a, accord-
ing to

Co= [ B 8" f[ B —a, —n,)

I#k Fi
(12)
C" _ :E = 3 _— —1 < 3 _ —
F2-k s AL X fl rI:I] B, —a, —mn,),
where
_[1 n=2h, 3
TE=6,,,, n=2n+1. 13

In passing it is interesting to note, as in the U(n) case, that the
spectral resolution of the matrix £ implies
n1
P(B)"+ln+x = z PBIC: s
k=1
which enables a systematic evaluation of O(n) invariants of
theform P(B)"* ", , |, for arbitrary polynomials p(x), by ap-
plying formula (12).
In an analogous way one may express the operators
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P[r]", and P [r]," as a function of the roots in the O(n) and
O(n — 1) identities. This enables us to evaluate the Wigner
coefficients (11) as required. However in order to determine
the matrix elements of the group generators one must also
obtain the corresponding reduced matrix elements.
Throughout the remainder of this paper let ¢ denote the
O(n) vector operator with components ¥ = a’, ,
(i = 1,...,n) with adjoint ' whose components are given by
¥, = a” *',. Following Green and Bracken,?° the vector op-
erator ¢ and its contragredient may be resolved into a sum of
shift vectors

p= 3 ylrl, ¢¥'=

r=1

21 ¥l

which alter the O(n) representation labels according to

Alrl = ¢lrld, + i)

Aln+1—rl =¢n+1—rld; — &)

L'l = ¢l =65,

AT n+1—rl =¢'[n+ 1 —rl(Ac +8),
for k,r = 1,...h with

AW Th + 1] =¢"[h + 114,,
Alh + 1] =¢lh + 1144,

These shift vectors may be constructed by application of the
projectors P [r] and P [r] as follows

Ylrl =Prlg =y¢P[r],
Y'lrl =PLrly" = ¢'Pr]. _
Since the matrix elements of the projectors P [r]and P [7]

are bilinear combinations of Clebsch—-Gordan coefficients
we obtain, from the Wigner-Eckart theorem, the result

YLrlg'lr] = M,P (7],
Yirylr]

where the M, (M) are O(r) invariants whose eigenvalues de-
termine the squares of the reduced matrix elements of Y.
Taking the trace of Eq. (14) the invariants M, and M, may be
evaluated by applying the equation

— [r1° rl i

Mr =Mn+1fr = i—f—_—_

tr(P [r])

By this means we may express the M, and M, asa function of
the B, and a, according to (see Ref. 24 and Appendix A)

— n+1 _ _

M, =(— 1] Bi—a)

k=1

for n=2h+ 1.

r=1,.,n

(14)
=M,P][r],

- 61,n+ 1 fr)_ly

X H @ —a; —mn
i (15)

= (=1L 6 — )

XH @, —a,—m —51,n+1-r)_~l’

I#r
where 7, is given by Eq. (13). _
By taking the (n,n) entries of Eq. (14) we obtain

1Y irl, =M, P(r]",,
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Y'lrl.yirl"=M,P[r],", (16)

which, using formulas (12) and (15), enables one to determine
the matrix elements of O(n) generators of the forma” *',.
However in order to obtain the matrix elements of the re-
maining generators it is necessary to proceed down the sub-
group chain in exact analogy with the U(n) case.'® To this
end we obtain a relationship between the O(n) and O(n + 1)
projection operators which determines the O{n + 1):O(n) re-
duced Wigner operators.

Following our U(n) derivation we have the result (see
also Appendix A)

1 ; m_ [(ntl n
3 purour.pin =o'y 0,

(17)
wherea(; ! 7)is an O(n) invariant whose eigenvalues deter-
mine the squares of the O(n + 1):0(n) reduced Wigner coeffi-
cients. Taking the O(n)-trace of Eq. (17) we see that (3 + ' 7)
may be evaluated algebraically from the equation

a(n +1 n) _tw(P[r1Q[k]P[r])
ko tr(P [r])
— tr(P [r]Q [k ]) , (18)
tr(P [7])

where the second equality follows from the cyclic rule of
traces and the projection property P [r]?> = P [r]. One may ex-
pressthea(; * ' 7)asafunction of the 3, and &, according to
the formula (see Appendix A)

n+1 n)

a( k r

= CkHr(Bk —a, —1,)" "B —a,)!
X(ﬁk‘an+14r_77r)——l(ﬂk—an+1—r—2nr)' (19)

This equation is clearly an analog of the corresponding
result for U(n) although it is a slightly more complicated
expression. As seen in Appendix A this extra complication
arises due to the dependence of the root a,, , , _, on the re-
presentation label 4,.

IV. SIMULTANEOUS SHIFTS

The Lie group O(n) admits the canonical chain of
subgroups

O(n)D0(n — 1)D--D0(2),
where each group O(m) occurring in this chain has infinites-
imal geneators o', where i and j are restricted to the range
1,...,m. Followmg our U(n) notation'® we denote the O(m)
matrix (@) (i, j = 1,...,m) by a,, and we denote the charac-
teristic roots of ,, by «,,, (r = 1,..,m). The a,,,, take con-
stant values on a ﬁmte-d1mens1onal irreducible module over
O(m) with highest weight (1, ,.,-.As) {# = [m/2]} given
bY @y =@yt — rm = Arm +m — 1 —r, where we define
labels A, ,, for > h in accordance with Eq. (8). We denote the
corresponding O(m) projectors by P(;") and P(™),
respectively:

m a, — al,m
p(™) = p (Znm2m ),
r P£r \ Oy — Oy
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_ &, —d,,
P('") =1 ( ~ .’—)
r I#r ar,m —al,m

We denote the (m,m) entries of these projectors by C, ,, and
C, ., respectively. From the previous section we know that
these operators determine squares of Wigner coefficients
whose eigenvalues are given by [see Eq. (12)]

Cr,m = Em +1—rm
m-—1
= H (ar,m _ak,m) H (ar,m

kEr =1

- nl,m —1 )— l’
(20)
where 7,,, _ , is given by Eq. (13) (with » replaced by m — 1);

ie.,
[1 for m — 1 =2,
Mm—1=11-6,,,, form—1=2h+1.

— Qo

(21)

We denote the O{m) vector operator (@', , ;)
(i = 1,...,m) by y(m) and denote its Hermitian conjugate by
#'(m). We denote the shift components of these operators by
¥(") and (™), respectively. We then have, in accordance
with Eq. (14},

YW =

VW) =M, . P,
where the O(m) invariants A?,,m and M, ,, (the squared re-

duced matrix elements) are given by
M - M m+ 1 —rm
m+1

:(_l)m H (ak,m+l _ar,m)

XII;[r @.mn—a

We therefore have, for the cases m even and m odd,
M_ - Mm + 1 —rm

m+1
= ( - l)m H (ak,m—+—l _—ar,m)

k=1

Mr,mP (:n), (22)

m _nl,m _6l,m+l—r)—l' (23)

XH (ar.m —al.m —1 _5I,m+l—r)_l!
I5r
m =2h,
A—i _Mm+l—rm
m+ 1
=(— l)m H (ak,m+l _ar,m)
k=1
XH (@ — Qe — 1+ 81444 _61,m+l—r)_l’
I5£r
m=2h+1,

Finally, we write Eq. (17) in the form

() =e(" 2 ()

where the O(m) invariant (" +' ) [the squared
O(m + 1):0(m) reduced Wigner coefficient] is given by
a(m +1

m 7 1
k r =Ck.m+er,m(ak,m+l —-a,, —"r,m)—
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(ak,m+1 _ar,m)—l(ak,m+l — Qi —rm —ﬂr,m)_]

X (ak,m +1 " —em — 2"7r,m ) (25)

As in the case of U{n) one sees that an O(r) generator of
theforma™ * !, transforms as a contragredient vector opera-
tor with respect to the subgroups O(m),...,O(! ) (for 2 < I<m).
We may then proceed to resolvea™ * !, into its simultaneous
shift components in direct analogy with the U(n) case. How-
ever in the case of the orthogonal groups a special derivation
is evidently necessary for the special cases where / = 1,2.
[This occurs primarily due to the fact that neither of the
generatorsa™ * ' ora™ * !, (m>2) transform as components
of a vector with respect to O(2).] We shall treat the case />3
first and consider the special case / = 1,2 later.

Firstly in the case / = m we see thata™ *!,, can only be
a component of a contragredient vector operator with re-
spect to the subgroups O{m) and we obtain a decomposition
into O(m) shift components according to

-34(7),

Next we note that a generator of the forma™*!,, |

(m — 1> 2) transforms as a component of a contragredient
vector with respect to the subgroups O(m) and O(m — 1).
Resolvinga™ *',, _, into its Of{m) shift components we ob-
tain a primary resolution

am m—l*Z¢T<)7ly
where

r=1
m —(m\ Jj my
o(7),=P(;) e =amie(7).

Now each ¢'(),. _, is also a component of a contragredient
vector operator with respect to O(m — 1). Hence we may
further decompose ¢'("),, _ , into its O(m — 1) shift compo-
nents according to

. m) _ m— 1 1;(m m— 1)
¢,(r m—1 1;|¢ r 1 m-l’
where

om m— 1)=—(m—l) ,r(m _ ,r(m) (m—l)
4 ( ! P / 4 r) 4 r P ! /)
Hence we obtain the resolution

m 1
amt! = *(m "= ) ,
! er [Z] ¢ l m—1

where each shift component ¥'(™* /" ~ ) simultaneously alters
the representation labels of O(m) and its subgroup O(m — 1)
according to

kmw(m ml ) W(m ml I)

x(/{km 6kr +6km+l—r)9

pm_lw(m m — ) W(m ml 1)

x(/{p,m -1 6pl + (sp,m — 1);

k=I,...,[ﬁ]; :[,.,,,[ m— 1 ]
2 P 2

m+1
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The simultaneous shift components ¢'(™ 7" ~ ') are
clearly given by

W(m ml ) Sm)P (m ml 1)
=7 e,

where P(" "~ ') and P (]~ ' 7) are the operators defined by

_11‘ m—1 i _
P(m " )= > P(m) P('" 1)", i=1,.m,
r [ 7 = r/, I 7
m—1 m)" mfl_(m—l)q—(m)f .
P = = oo - .
< l r/, 2 P / .P Pl Leom — 1

J q=1 J q

More generally a generator o™ * ', (3</<m) may be re-
solved into shift components which simultaneously alter the
representaion labels of the subgroups O(m),...,O(/ ). This de-
composition may be written as

,(Ek, w(t(m) z(ll ))1’

where the summation symbol is shorthand notation for

m m—1

im=1im—-1)=1 ifj=1

Each shift component alters the representation labels of
the subgroups O{m),...,O(/) according to

Aot (g z(ll )

= W(l(m) (1 ))(Akp 5k’i(p) + 5k,p+ 1— iip))
forp=1,...m; k=1,.,[p/2].

Clearly then if i(r)<[r/2] then the above shift component
decreases the O(r) representation label 4, , by 1 unit. On the
otherhandifi(r)>[r/2] thend, , , _,,, isincreased by 1 unit.
In the special case where r is odd and i(r) = [#/2] + 1 then
none of the O(r) representation labels are altered.

These shift components may be constructed by repeat-
ed application of the subgroup projectors as in the case of
U(n). We denote the m X/ matrix of operators with entries
given by
m—1m-=2 i — K

25 22l Pl =) )
=2 & \im) im—1)/, l(l)j

i=1’ YU _]=1, ’ly

simply by P (.- i) Similarly we define the matrix of oper-
ators P (,(,, -y} constructed from the adjoint projectors.
Clearly then, the simultaneous shift components of the gen-
erators ¢'(m), = a™* ', are given by

m 1IN =1 ¢
w(z‘(m)mi(l )) =F (1(1) z(m))lll (m)
/
=P a0y}
In the same way we define the matrix of operators

F (i(ﬁ)'"i(i)> and P (i(i)mi(Z))
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defined in the same way but with the order reversed. These
operators project out the simultaneous shift components of

i
the generators o', | |;

@y = ,(Zk) ’/’(,'(;”:1)."1'(2 ))I’

'/’(i(’:;)"'i(ll))zp (i(ll)"'i:n))'/’(m) Yim)P (t(m) z(i))

We may now present a generalization of Eq. (16) for the
multiple shift vectors #(},,, ;). We have

l/}(1(2) il )) W(z(m) z(i))

] -1 mY .
=F (i(l il — 1)i(m)),.¢("’) ¥lim)

( m m—1 )
im)itm — 1) i(1)/,

=F (i(ll i - 11)):‘”(1‘(’»"71))["*(1'(?"))1
><P( - '--.l .

im—1) il)/,
Using Eq. (22) this in turn may be written

_ I m—1 m m—1 1Y

M, P( )P( )P( ) ) 26
TmmE Nl im — 1) \iim))” \ilm — 1) i)/, (26)

Hence by repeated application of Egs. (24) and (25) we obtain

l/}(z(’:ln) 1(1)) l’N(z(m) t(ll))

m

Mi{l),l Ci(l),l H Ml(r) rcl(r) r

r=1+1
X, — Qe iyr— 1 = Mir — r — 1)_l
X @y — @ip 1y 1)
X(@mr = A it~y -1~ Mitr— 11 )~!
X (ai(r),r — &1 2% vr—1h 27

which is the required generalization of Eq. (16).

We now consider the special case where / = 1,2. Al-
though the generators @™ * ', and @™ * ?, both transform as
components of vectors with respect to the groups
O(m),...,O(3) it is clear that neither of them transform as vec-
tors with respect to the subgroup Of(2). This leads us to con-
sider the operators ¢ , (m) defined by

bolm= @, tid,, )

\/2

{In the case m = 2 we see that these operators are the well-
known ladder operators L , appearing in the theory of an-
gular momenta.) These operators may be regarded as com-
ponents of the O(m) vector operator

Yim)' = ¢, (m),
Ym) =y _(m),
¢(m)l =a' m4 1y
which is obtainable from the O(m) vector operator (&', , ,)

(i = 1,...,m) by considering the change of basis
transformation

i=3,.,m,
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e— —1: (e, — iey),
\/2

1 .
e, —= (e, + iey),

e,—e, i=13,..m.

The associated change of basis matrix is given by the m Xm
block matrix

M= M2 ® Im -2
where I, _, is the (m — 2)X(m — 2) identity matrix and

k()

Clearly the O(m) vector ¢/ = (M ~'},&’,, , , has components
in their O(2) weight space forms. Similarly the entries of the
O(m) matrix

a=MaM !
consist of O(m) generators in their O(2) weight space forms.
We may now proceed as we did before working with the
matrix g instead of the matrix a. The modifications required
are straightforward and the analysis proceeds in exactly the
same way as before.

The result is that the operators ¢, (m) and their ad-
joints ¢', (m) = (1/v2)(@7 * ' Fiay *') may be resolved
into simultaneous shift components

m 3 2
V. m)= %”"(z(m) 3 £ +)

&, (m)= Z'ﬁf(l(m) i{3) +)

l(k)

where the simultaneous shift components simultaneously al-
ter the representation labels of the subgroups O(m),---O(3) as
before and also alter the representation labels of O(2) accord-
ing to
m 3 2 m 3 2
A ( )=( )4 1)
im) i) +) = A 0+ iz £1)

L A R P L

Note that ¥, can only increase the representation label of
O(2) while ¢ _ can only decrease the representation label of
O(2) (and similarly for ¢*_ ).

In the case of O(2) all Wigner coefficients are unity and
the result corresponding to Eq. (27) for the simultaneous
shift components of the operators ¢ (m) is

‘”(4’:1) W)+ WAt .

_M1,2¢(m 3 Z)W.(m 3 2)
iim) i3) — im) i3) —
_M12 H ir),r 1lr)r
r=3

XAy — Air 1)1 —lﬂi(H nro1) !

X(ai(r),r — Q-1 )"

X @iy =t~ tyr =1 = D= 1pr—1) "

X(@iyr — Qi yr— 1 — 27— Br—1)s (28)
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where M, , and M, , are given by Eq. (23).
Expressing the generatorsa™ * ! anda™ * ', in terms of
¢!, (m) we have

a"‘+‘,=—1=(

Y (m) + ¢7_ (m)),
(29)
an+l, = #E (@', (m) —¢"_ (m)).

From this it follows, in our previous notation, that the gener-
atorsa™ * !, and @™ * ', may be resolved into a sum of shift
components

+1 = m e 32 | =
a = %w(i(m) i(3)i(2))i’ i=12,

where the shift components alter the O(2) representation la-
bel according to

i"2""((’:1) i3) )= im ,(33) s =1

At (i ,(3)2) gm ié)i)“m“"

These shift components, in view of Eq. (29), are given by

w(i(r:l)mié) ?)1 = \/L; '”(,-(',n,,,"‘,-é) i )

(z(m) i) ), - \/%W(i(’rnn)"'z’é) !

i(m)'"z(3) 1) - ‘/I-;W(f(’:ln)"'ié) i)
),

i m 3 2
o \/—EW(i(m)"'z’(s) 2} wo

V.MATRIX ELEMENTS OF THE O(7) GENERATORS

Throughout this section we assume that we are working
in a finite-dimensional irreducible module over O(n) which
admits a Gel'fand—Zetlin basis. Our aim is to evaluate the
matrix elements of the generators a™ !, (I<m).

For ease of notation we write an arbitrary Gel’fand—
Zetlinbasisstateintheform |4, ) (k = 2,...,nj = 1,...,[k /2])
where the 4, satisfy the well-known Gel’fand betweenness
conditions. In the special case / = m>3 we see that the ma-
trix elements of the generator ™ *',, are given by

"t | A = zw( ) A

r=1

i(m)"'z(3) 2

= Z Nmr |Aj,k —Ar,m)y
r=1

where | 4;, — 4,,,) denotes the state obtained from |4, )
by adding to the row (4, ,,,...,A,,,) {A = [m/2]}, corre-
sponding to the representation labels of O(m), the O(m)
weight — 4, .. Here the weight 4, ,, is defined for
r = 1,...,m in accordance with Eq. (7).

The matrix elements N, (4, ,, , 134,34, _ ) are giv-
en by (up to a phase)
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|Nmr | = <’1;,k |1‘7 Cr,m |‘&j,k>”2

which may be evaluated using Eqgs. (20) and (23). Hence for
the case m = 2h we obtain

VR A m o1 —Apm +7—p + DA,

1= (

and in the case m = 2h + 1 we obtain

l#r(’lr,m _;{’I,m +l_r_ 1

(— l)mnm (X'kmqu A‘r,m +r—p + 1)

- al,m +1— r)(ir,m

m—1
I=1

A

lm—1+1_r+ls“,)> (31)
_il,m +1_r)

v = ( ...,

where we have adopted convention (8) for defining labels
A, for r>h = [m/2]. The phases for the above matrix ele-
ments will be determined in the next section.

Returning to the general case we may resolve the gener-
ator a™ * ', (3<I<m) into its simultaneous shift components
to give

am+11|/1‘k>
= %"/’*(z(m 1(1)) | Aac)

m I
- (2,;, N (i(m)'"i(l )) | A

The matrix elements in this case are given by (up to a phase)

'N (i(’::l)mi(ll )) 1

! 1/2
= A M(z(m) il )) W(l(m) il )) A
which, by virtue of Eq. (27), is equal to

Ai(l )W ).

i{mym —

m L
-1

H ‘Nri(r) l H Hain, — @ir— 1)1 = Mir —114r - 1)
r=1 r=1+1

X(@ipr — Air - 11r — 1 - |

X(ai(r),r =0, i r—t — Mir— e — n)

1/2

XA @ipr = Qo — i — 1r— 1t _2ni(r—l)r41)] ’ (33)

where |N 4 | arethe phase -free matrix elements of the gen-

erator &+ ' which are glven by Egs. (31) and (32).
Itis clear that N (m) <) corresponds to the generator
matrix element [suppressing the labels of the subgroups

O(m +2)]

</i’jwm +1 /{}»m +1 > , l>3

(A7) A)

where (4 ') is obtained from the pattern (4 ) by adding to the
first (m — 1) rows of the pattern (4 ), corresponding to the
representation labels of the respective subgroups
O(m),...,O(l ), the weights — A,,, — Ay _y)» — A,
respectively.

m+ 1
/

In the case of the generator a7’ * ' we have a resolution
into simultaneous shift components which are defined by
Eq. (30). In this case we may write

af’zwrl M“j,k)
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—Ap +1—7r—1 +6h 1 =1

rm iI,m - T -7 )1/2 (32)
- /‘L,'m +1-—7) ’
—
= f m .ee 2
a ; v (i(m) i(Z))z [ A
m 2
- % Nz(i(m)ml'(Z)) | Asse = A Aig2)s

where we have adopted the same convention as before [keep-
inginmind that 4, = 1 = — A, for O(2)]. We have found it
convenient in this case to add a subscript 2 to the matrix
element to indicate that we are considering the generator
a™* ', rather than @™ * ' . (In the other cases this ambiguity
does not arise).

Our phase-free matrix elements in this case are given by

[see Eq. {30)]

N 2(:‘(2)"'?) \
- Lo
N 2(:‘(2)"2) \

- j; (ij’k ¢(z(m) —)W(t(m) ) llij’k>]/2

Using Eq. (28) we therefore have, in terms of the matrix
elements of the generator a™ ™' [see Eq. (33)],

*im)

¢(i(rrnn)m er )'/'T(i(n;;)'" i ) &"">]/2’

1 = m 3
='TM121/2N A3),3 ‘12“1¥l
2 M) (t(m) :(3))\“ s @2 = 1)
X(ai(3),3 —ax,z)-l
X(ans),,x — Ay — I)FI(aqs],} — &y, — 2)]”2

() el

The phase-free matrix elements |N,(J,, -, )| of the gener-
ator @™ * ', are given by the same expressions. From the

commutation relationa™* !, = [a™ * ',,a%,] wesee that the
m+ 1

full matrix elements of the generators a™t' anda ,are
related by
m 32 32
N:(. ) = - Nz(.m ),
im) i3)1 iim) i3)1
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and

N '(i(’rnn)mi(:;) i) = +iN 2( (’rnn) 1(33) i)

(This occurs since we are labeling our weights by the eigen-
values of — ia'}; i.e., we are adopting the phase — i for the
generator a?,).

(34)

VI. CHOICE OF PHASES

Unlike the U(n) case we cannot simply choose the
phases of the generators @™ * ', tobe ( + 1). This is because
on unitary representations of the group the generators a*,
are to be represented by anti-Hermitian matrices. Now the
Cartan generators a*’,, _, have diagonal entries (in fact
these are the only generators with diagonal matrix elements)
and hence, by the anti-Hermitian property, these must be
pure imaginary. Hence we adopt the phase ( — {) for the diag-
onal matrix elements. Although the remaining matrix ele-
ments of the Cartan generators can be chosen to be real we
feel it is simpler to adopt the phase convention ( — i) for all
matrix elements of the Cartan generators. In keeping with
the unity of this choice of phase factor we adopt the phase
{ — i) for the matrix elements of all generators of the form
a™ !, (although one may equally well choose real phases
for the matrix elements of the generatorsa® * ',,). It is easily
checked that the choice ( — /) for the phases of the generators
a™ "', is consistent with Hermiticity requirements.

The phases of the matrix elements of the remaining gen-
erators are now dictated by the Lie algebra commutation
relations. It follows from these considerations that the
phase-free matrix elements of the generator a™ * !, (/>2) are
to be multiplied by a complex phase ( — /)" * ' ~'and an ad-
ditional real phase

S(ilm — 1) — i(m))S (im — 2) — i(m — 1))
=S (i) — il + 1)),

where
S (x) = sign(x),
and
S0)=1
[c.f., U(n) case]. Thus for m>»/>2 we have

™! )
(m) i)

= (=i =T St — itr + 1)

( i(m) 'i(j )) '

In the case of the generator @™ * !, the matrix elements are
obtained from those of @™ * ', (whose phases are determined
by the above conventions) by Egs. (34).

As an example to clarify our notation and our choice of
phase convention the matrix elements of the O(4) generators
are written down in Appendix B. One sees that the absolute
value of the matrix elements agrees with the results obtained
in Ref. 12 but the phase conventions are different.
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VII. ANALYSIS OF RESULTS

We have shown that the only nonvanishing matrix ele-
ments of the generator a™ *', are of the form [suppressing
the labels of O(m + 1j]

<<i:) oo (i>> ’

where (1) is obtained from the pattern ( 1) by adding to the
first (m — /) rows of the pattern ( ), corresponding to the
representation labels of the subgroups O(m),...,0(/ ), the
weights — 4, s — Bim _ 1y -1 — 4 i) » TESpectively.
The corresponding matrix element is given by formulas (31 )-
(34) (with the phase convention adopted in the previous sec-
tion). From the Wigner-Eckart theorem it follows also that
this matrix element may be written

A~ A,(m,>

w) 1’

where the first term is the O{m) reduced matrix element
(M, m)""*. Comparing this with the formulas obtained for
the matrix elements one may obtain all fundamental Wigner
coefficients of O(n).

Also, by comparing Eq. (35) with Eq. (26}, one sees that
the general fundamental Wigner coefficient may be ex-
pressed algebraically, for the case /> 2, by

CH
Wl )

m—1 m

<(,u)‘ ( () dm — )i (m)i(r;_—ll}mi(ll))

m+ 1

(A= Ay l0Am)lI2 ) < 110

(35)

il
1)
in direct analogy with the U(nj case.

Finally, in the notation of Baird and Biedenharn,® let us
denote the O() Wigner coefficient ( — i)(C,,,,)"/* by ("),
the reduced matrix element (M,,,,)'/* by (;,%,') and the corre-
sponding reduced Wigner coefficient a(j,, ;,},)) by
(7_,, 7_1). Then the matrix elements may be expressed, for
152,

N(l'(’:ln)mi(i )) (:(nm_;—r:l) ﬁ+ 1 S(ilr— 1) — ir)

SOty

in direct analogy with the U(n) case. Trivial modifications
are required to extend this result to the case where / = 1,2.

APPENDIX A

Here we give a brief derivation of the results presented
in Sec. III {(see Ref. 24 for a more detailed account). We adopt
the same notation as that used in Sec. 111.

From the characteristic identity of the O(n + 1) matrix
B wehave fQ[k]=p.Q [k ]. Taking the {i,n + 1) entry of
this matrix equation and rearranging we have

ain+lck =(Bk _a)'jQ [k ]jn+1’
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where C, denotes the Ofn) invariant Q@ [k ]"*', , | and
where we have summed over repeated index j from 1 to n.
Inverting this equation we have

Q[k]in+1 = [(Bk "a)_l]ijajn+1cka
where (8, — a)” ! denotes the matrix

Bi—a)'= ¥ B —a,) P

r=1
Resolving the O(n) vector ' = ', , ; (i = 1,...,n) into its
shift components we then have

Qlkl,si= Y B —a) 'ylrlC, .

r=1

When r<4 = [n/2] we may write
B —a, ) Ylrl =9¢[r1 B —a, — )7,
B —a, )7l +1—r]
=Yl 1—rlBy —an, s, — 1)

However for n = 2h + 1 we have the zero shift component
which satisfies

B —ni i) P+ 11 =glh+11Bk —ay 1)

(Al)

‘We combine these relations into the more compact form

(ﬂk _ar)_lw[r] = ¢'[r](ﬂk —Qa, — ﬂr)_l)
where 7, =, , ,_, = 1 for r<h, withy, ., =0for
n = 2h + 1. Thus we may write Eq. (A1) in the form

QlkT,.y = 3 Ul —a, —,)7'Cy.

r=1

(A2)

Similarly we have

QIk1" = 3 (B —a, —7,)'Cyllr]; . (A3)

r=1

Summing these equations over & from 1 to n + 1 one
sees that the C, satisfy

m+ 1

_Z (ﬁ/\’ —a, _ﬂr)_lck :0’

k=1

These equations together with the condition

r=1,..,n.

uniquely determines the C, . Using Lagrange-interpolation
techniques {or else invert the equations using matrix meth-
ods) one sees that the unique solutions to these equations are
given by

Co=TI B - 8" [] B — @ — )

{#£k r=1
Similarly we have a corresponding expression for C,,.

(A4)

We now evaluate the O{n) invariants ¢'[7],¢[r]". We
first invert Eq. (A2) to get ¢[r]’in the form P(B), ., fora
suitable polynomial p(x). We may then evaluate our invar-
iants by a simple application of the O{n + 1} characteristic
identity. This leads us to consider the solutions y, to the
equations
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n+1

Z 7/lkck(ﬂk —a, — 77;')71 :5r1’ /= 11"'!’17

k=1
and

n+ 1

2 YuCy =0.

k=1
Then, for each r = 1,...,n, we have (n + 1) equations in
(n + 1j unknowns y,, (k = 1,...,n 4+ 1} which yield the
unique solution
1

’}’rk = ,}/r(ﬁk _ar “nr); H
where
n+1
Y. =(— l)n H (ﬁp —Q, _nr) H (ar —a[);l‘
p=1 I#r

Thus multiplying Eq. {A2) by 7,, and summing over k
we obtain

$ =S QYo 1B —a —7,)"

k=1

(AS)

Multiplying on the left by " + ', and summing on i from 1 to
n we obtain, usinga” '@ [k ]', ., =B Cs,

W[r],-t/’[r]’ =a"" 1i'¢'[’]i =%,.

Using the O{n) commutation relations one may deduce
the result (see Refs. 21 and 24)

Qe =Q[k]. 1 (C)'QLkI" . (A6)
From this and Eq. (A4) we have the results
ity Wi, =PI,
which may be rearranged to give
Ylr1Yr], = M, P[r]}, (A7)

which is Eq. (14). Finally applying the O(n} projector to both
sides of Eq. (A6) we obtain, using Eqs. (A2) and (A3),

PUr1Q (k1P [r); =4[r1 B —a, —u,) *Cuy'(r], .
From the form of C, given by Eq. (A4) we then obtain, in
view of Eq. (A7),

PrQ(k]P(r]
= CkHer —a, —n,)_l(ﬁk —a,)”!
X(Bk _an+l—r _nr)—l(ﬂk _an+1—r —‘277r}
X P[r].

More details are given in Ref. 24.

APPENDIX B
We consider here the action of the O(4) generators on an
arbitrary Gel’fand basis state

m, m,
!

m

Before proceeding we note that acting on this state the
Ofd)roots a,, are givenbya,, =m, + 2, a,y, =m, + 1,

as, =1 —m, a,, = — m, while the O(3) roots are given by
a,; =1+ 1,a,;, =1, a;; = — [. Finally the O(2) roots are
M. D. Gould 2386



a12=m=—‘ —azz. ml mz m‘
The matrix §lex_nents.of the O(3) generators are, accord- o) 1 =3 [l —m)l+m+ 1)] iz

ing to our prescription, given by ” e 1

my

m, m, m, m;,
a1 = —im) [ ,
m m

— [+ mll —m+ 1))
m—1

m,

m,

My e The matrix elements of the generator a*,, in view of our
aly) phase convention and Eq. (32), are given by
" m, m, m, m;
] 4
= L i—mil+m+ 17 1 a'y| !
2 m+ 1 m
, m m; m;  m, mg My my
— L irmil—m+ 1)V 1 , =N3|I-1 +NY| ! N3 1
2 m—1 m m m—
J
where
N = [ (I + m)l — m)im, — 1 + 1)l + my)l — m)(l + m, + 1) ]"2’
= 1720 + 12l — 1)
N32= .__l'[ _mmZ‘ml+l) ]’
I/+1)

N, = -—i[ +m+ Ul —m+Ym ~Hl+m +2)+m,+ )+ 1—m,) }'/2'
21+ )2l + 3 + 1)

Similarly for the generator a*, we have

m;, m, m m, m, m,
3 3 2
at,] ! =N2( 2) I1—1 +N2( ) /
1 1 2 1
m m—1 m-—1
m m m m
3 2 1 2 3 2 1 2
+N2( ) I+1 +N2( ) -1
31 1 2
m—1 m+1
m m, m, m,
3 2) ! (3 2)
! .
+N2(2 ) >+N23 ) I+1
m+ 1 m+1

The matrix elements in this case are given by

N2(3 2)= _ L[(1+mnml — Lo W (4 mall 4, 4 04— 1) ]
1720 — 120+ 1)

N

(L + 1= m)l + mymy’(m, + 1) ]’”
1+ 1P ’

U—m+ W +m +20+m+ Y+ 1—mym — I}l ~m+2) ]vz
(21 + 3)(2 + 1)/ 4 1)? ’

3
71
N2(3 2)= _H(l—m)(m,~1+1)(1~m2)(1+m2)(1+m.+1)(/—m-1)]vz,
7]
3

13— 12 + 1)
(I + 1+ m)l — mmm, + 1) ]1/2
1+ 17 '
((+m+ Ol +m + 20 +my+ W+ 1 —my)m, — )+ m+2) ]”2.
(21 + 3)20 + 1) + 1)?
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In a similar way we define the action of the generator
o*; on the state

mg m,
!
m

The matrix elements in this case are related to those of the
generator a*, by Eq. (34); i.e.,

32 (3 2
N‘(j 1)=“’N2(j 1)
32\ (3 2
N‘(j 2)=’N2(j 1)

One may check directly that the O(4) commutation re-
lations are satisfied with these matrix elements.

F=123.
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Classical and quantal systems of imprimitivity
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We discuss from a group-theoretical point of view, a simple framework in which the classical and
the quantal state spaces appear in a unified way. The framework is characterized by the use of
(possibly continuous) direct unions of Hilbert spaces. Symmetries are correspondingly
represented by families of (anti-) unitary operators. We consider here the associated notions of
projective representations as well as the corresponding observables. These observables, classical
or quantal, are defined in terms of a slight generalization of the notion of a system of imprimitivity

of Mackey.
PACS numbers: 02.20. + b, 03.20. + i, 03.65.Bz

INTRODUCTION

There exists a simple way for describing the classical
and the quantal state spaces of an elementary physical sys-
tem in a single mathematical framework. It is to consider
(topological) direct unions of Hilbert spaces. Classical phys-
ics, where a state is usually given by a point in the phase
space, corresponds then to the extreme case where each Hil-
bert space is of dimension one and the union is precisely
taken over this phase space. Usual quantum physics, on the
other hand, corresponds to the other extreme case, where the
union is trivial and the space is thus a single Hilbert space.
More generally and in the intermediate cases, such a frame-
work is able to describe situations where parts of a system
have a quantal behavior, whereas other aspects are of the
classical type. Think for example of superselection sectors,
or of a spin-spin interaction in a crystal (with fixed positions
and momenta) or of a measurement procedure of a quantal
system with a classical device.

On the other hand, the fact that we can compare differ-
ent models (classical with quantal and, as we shall see, rela-
tivistic with nonrelativistic in particular) in a unified math-
ematical language is of course of great importance for the
understanding of the results and of the difficulties encoun-
tered in each separate context.

In a previous work,' we have shown that, conversely,
one can derive the classical and quantal state space, for a
spinless particle, in a unified way, when considering these
direct unions as representation spaces for the corresponding
kinematical symmetry groups. More precisely we consid-
ered those representations for which there exist sufficiently
faithful operators for each observable which corresponds to
the system. This construction is based on the following brief-
ly sketched points of view.

The state of a physical system is specified by the possi-
ble outcomes of the measurements that we can choose to
perform on it. To these measurements correspond the obser-
vables, and to the outcomes correspond (subsets of) the spec-
tra of these observables. Let us consider the space I of all
spectra of the observables that correspond to some given
system. A typical example of such a space I" is the phase
space, with the observables position and momentum. On this
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space I', the usual physical equivalence principles corre-
spond to a natural action which forms the defining represen-
tation of a group. We have called the corresponding groups
kinematical in order to emphasize that they are independent
by definition of the dynamics and of the interactions, as the
latter neither changes the representation nor the interpreta-
tion of the observables. It is only in a second step, when the
state spaces have been specified, that it will be possible to
consider the corresponding dynamics. This distinction is es-
sential if we want to build up theories able to describe more
than only free particles.

One of the main results of Ref. 1 was that both in the
relativistic and nonrelativistic contexts there are two and
only two solutions for the corresponding state spaces: the
classical and quantal ones. The framework provides thus
also by the way a new approach to quantization.

In order to generalize these models, in particular if we
want to consider particles with an arbitrary spin or for the
discussion of the nonrelativistic limit of the relativistic case
we, however, need to consider a more general framework
where arbitrary projective representations on such direct
union spaces are considered. A first step in this direction was
the solution of the corresponding cohomological problem
(families of phase factor systems). This solution has been giv-
en in Ref. 2.

In the present paper we continue to analyze the math-
ematical basis of our approach, and we give the general solu-
tion for the state spaces and for the associated observables,
the former in terms of group representations and the latter in
terms of a generalization of the notion of systems of imprimi-
tivity of Mackey.” We have also taken advantage of the pre-
sent generalization for rewriting in a more direct algebraic
way some of our previous results.'

The paper will be organized as follows. In the first part
we briefly recall some axiomatic justifications of our ap-
proach and then discuss the structure of the state spaces in
terms of carrier spaces of group representations. In the sec-
ond part we give the general solution of the representation
problem and in part three we discuss the associated observ-
able representations. Finally in part four we illustrate our
results at the hand of a simple representative example. The
main applications of the theory will be discussed in a sepa-
rate paper.*
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1. K SPACES AND PROJECTIVE K REPRESENTATIONS

A K-space is defined as being a direct union over some
(Borel) index set S of a family of (isomorphic) Hilbert spaces
{that will be assumed here to be complex and separable)

K=V, (1.1)

ses

The elements of K (respectively, the pure states) are thus
given by some index s,€S and a corresponding vector (re-
spectively, a ray) in #7 .

The choice of (1.1) as a possible state space for a physical
system can be justified by a pragmatic argument (see the
Introduction), but also from an axiomatic point of view,
which is interesting to briefly mention here ({for details we
refer to Ref. 5). On K there exists, namely, a natural so-called
lattice of propositions denoted by .¥°(K ) and defined as fol-
lows. A projection in K is a family of projectors { P, } in the
corresponding Hilbert spaces; in the set of all projections one
can define a lattice structure using the lattice structure
which is based on the operations of unions and intersections
of closed subspaces in each single Hilbert space. More pre-
cisely the inclusion, compatability, complementary, and in-
tersection in . (K} are defined in turn by

(i) {P)<{Q}if P, <Q, Vsiff P,Q =P, Vs,

(i) (P} (Q,)iff @, Vsiff [P, 0,]=0 Vs,

(i) {P} = (P} ={1, — P},

) (PIAIQ) = (B AQ) = (stimpor] (12

The above algebraic structure allows application of the
notion of morphism in a straightforward way and it follows
from the representation theorem of Piron® that (up to small
technical restrictions) any lattice of propositions corre-
sponding to an elementary physical system is isomorphic to
such a .#’(K ). In other words, the space (1.1) is then indeed
the most general state space for the corresponding system,
and the projections {1.2) then correspond to the properties of
the system. We refer to Ref. 5 for a more precise review of
these aspects.

We can now define the notion of symmetry in this
framework.

Definition 1.1: A symmetry in K is an automorphism of
the corresponding lattice of propositions, i. e., an invertible
map of .’(K ) onto itself that preserves its algebraic
structure.

The essential result that we shall need in the sequel is
the following generalization of the theorem of Wigner.

Theorem 1.2 (Ref.6): Every symmetry of a proposition
system defined by a family {77, ,s€S } is given by a permuta-
tion 7 of the index set S and a family of unitary or antiunitary
operators

U,y K —F . (1.3)
Moreover, each U, is unique up to a phase.

It follows directly from this theorem that for each pair
of elements g,, g, in a group G of symmetries we have the
following generalized projective representation relations:

U(g)U,, ,(8)=0w,(88)U.(88>)
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where w,{ g,,8,)€U (1) is a phase that may depend on g, g,,
and s.

As a consequence of the above theorem we are thus led
to the following.

Definition 1.3 (Ref. 2): A projective K-representation of a
group G in a space K is a set of automorphisms U (g):K—K
that satisfies the following four conditions:

(i) Ule)=1,, e the unit of G, (1.4)

(i) U(g)U(g)=12(g,8.)U(88>) (1.5)
with 2 a family {w,} of c-numbers of length 1,

£0:G X G—(U(1))%, its action on an element ¥ of K being giv-
enby (2(g1.82)¥), = ,(8,.8:N¥ ),

{iii) U{g) can be decomposed as

U(g)l=L(gc"8) (1.6)
where L (g) = {L( g}} isa family of (anti-) unitary operators
acting in each #°,, 1. e., L ( g}e % (57;) and £ °( g) is a permu-
tation operator acting (only) on the variable s:

(W) = (¥, s (1.7)

We denote gs, by a slight abuse of notation, as the image
of s under the permutation induced by g on S.

(iv) U ( g)is continuousing on § X & (with for 5" the strong
topology).

It follows from the above definition that L, as a map-
ping on § X G, satisfies the following equations:

(i) L{gL, (&) =88 (818
(ii) L(e)=1, , VseS, (1.8)

i. e., L satisfies (projective) normalized G-S-% {(77")-cocycle
equations,’ and the problem can thus be tackled using cocy-
cle techniques.

Another important consequence of the above definition
is that S'is then a G-space in the sense of Mackey": symmetry
products being defined by composition we indeed can define
a natural antihomomorphic map ¢ from G to the automor-
phisms of S, with ( g)s = g7 's and this map p satisfies, as
required,

(el gl g2))s) = wl g (e 82)s)),

w8l gx) =l 8:81);
ulels =s, Vses. (1.9)

In general S thus splits under the action of G into dis-
joint orbits but in the particular case where the action of G is
transitive, S can be identified with a quotient space S~G /H,
with H = Stab s,,, the (closed) stabilizer of an (arbitrary)
point s,S.

Definition 1.4: A projective K-representation is called
irreducible if and only if

(i) the action of G on § is transitive,

(i) the set L, (H ), s,€S arbitrary, H = Stabs, is an irreducible
projective representation of H in #7 .

Obviously this definition does not depend on the choice
of 5, and it follows by restriction from Definition 1.3 that
L, (H )isalways a unitary/antiunitary representation of H in

Sor
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Defining the commutant as the set of commuting fam-
ilies {4 },4,€.7°(7;), itis easy to see that a representation is
irreducible if and only if the commutant is trivial (the proof is
as in Ref. 1).

Similarly one can define equivalent representations as
representations intertwined by an automorphism of X, i. e.,

Definition 1.5: Two projective K-representations U and
U’ of G are called equivalent if and only if there exists a
(Borel) isomorphism 7:5—S ' in the corresponding base
spaces and a family of unitary operators ¥ = {V,, s€S },

V:H ,—H . such that VgeG

U'lg)=V.U(ghV~" (1.10)

The first problem is the one of the possible families of
phase factors which may occur in (1.3). Analogous to the
usual case it follows from the associativity that they are not
arbitrary but satisfy the following generalized comultiplier
equations:

(‘)s( & gz)ws( £182 g3) = a)s(gl! gQgi)a)Z{g{i( &2 g3)’(1 1 1)

where 7{ g) denotes the complex conjugation in the case
where U ( g} is a family of antiunitary operators. In Ref. 2 we
have investigated in detail the solutions, called K-comulti-
pliers, of these equations and we have proven the following:

Theorem 1.6: Let U be an irreducible (unitary) projec-
tive K-representation. Then the K-multiplier 12 is equivalent
to a K-multiplier 12’ given by

a)s,(gl!gZ):ws(,(v(s’gl)! V(glAls’gz))r {1.12)

with s,€S arbitrary, H = Stabs,, and v{s, g} is the (unique)
element of H defined by

vis, g) =k (s)}g-lk (g™ 's)) ™", (1.13)
where & (s} is, for each s, the {fixed) representative of the
unique coset class in G /H satisfying the equation
k (s)~ "5, = 5. Conversely each equivalence class
[w]eH *(H,U (1)) gives rise, via the same formula (1.12) with
w,, = w, to one and only one equivalence class of solutions
[21of (1.11).

For more details on this cohomological problem we re-
fer to Ref. 2. In words, the above theorem says that {2 is, up
to equivalence, uniquely defined by its double restriction
from S X G to 5, X Stabs,, for some arbitrary s,€S, and that
conversely each solution of this double restriction gives rise
to a solution £2. Moreover this correspondence preserves the
equivalences.

Finally let us briefly show how the so-called lifting pro-
cedure” generalizes, i. ., how it is possible to construct a
group G “ in such a way that the projective K-representa-
tions of G with K-multiplier £2 can be lifted to ordinary (vec-
tor) K-representations of this larger group G . We therefore
consider G as given, K = V. , and U some irreducible
projective K-representation of G with {2 arbitrary but fixed.
The group G  is defined as follows. It has elements

(P.g). Pe[U(1)]% geG, (1.14)
i. e, @ is a family of phases, @ = {@, }, seS, p,eU(1). The
product in G  is given by

(P, 8NP, 82) = (PrL (8192281, 82, 88),  (1.15)
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where the product in (U (1))% is defined term by term and the
action § is given by

Clelp=U(gld-U(g)™' (1.16)

or, equivalently, as can easily be computed, and in compo-
nents, by

(&), =4,
with 7( g} asin (1.11}.

Using the K-comultiplier equations (1.11) it is easy to
see that this product is associative. Together with a unit ele-
ment (1,e) with e the unit of G, G * forms a group and the
projective K-representation U defines an ordinary represen-
tation ¥ of G with

def

V{o,g)=@Ulg)

(1.17)

(1.18)

Conversely, given any (vector) K-representation ¥ of G
which satisfies

V(de) = b, (1.19)
one can construct a projective K-representation U of G with
Ulg)="V(Lg,8). (1.20)

Obviously, G * appears as an extension with the normal sub-
group of phases in general not in the center, even if all L ( g)
in (1.6) are unitary(this is in opposition to the usual case)

0—[U(1)]5-G %G1, (1.21)

the extension being characterized by the factor system £2 and
the mapping ¢ of G in the automorphisms of (U (1))

Similarly to the usual case,'® if the mapping S—®,
which can be considered as a cross section in the bundle of
base S and fiber U (1), is supposed to be continuous for all @
and if G is continuous then G “ is continuous. Analogously if
these cross sections are measurable and if G is a measurable
group then G is measurable, too.

2. PROJECTIVE K REPRESENTATIONS

In this section we shall, in a first part, construct explicit
examples of solutions for Egs. (1.3)~(1.7), 1. €., explicit exam-
ples of projective K-representations. In a second part we
shall then show that this construction is exhaustive, i. e., we
shall give the general solution of this problem.

Thus let G and S be given. As we are interested in ele-
mentary systems, we may suppose without loss of generality
{see Definition 1.4) that the action of G on S is transitive, i. e.,
S=~G /H, H = Stabs,, s,eS. Let £ denote this action.

Furthermore, let D be some projective unitary repre-
sentation of H, with multiplier w, in some carrier space
(D). Then let K be the direct union over S of copies of this
space.

K=V,(#D)), 2.1)

On this space K we define the following operators YgeG:

Ulg)=L(grs(8) (2.2)
where L (g} = {L,{g)} and
L(g)=D(vis g)), (2.3)

with (s, g} as given in (1.13). Let us just remark here that
these formulas are formally the same as in the nonprojective

N. Giovannini 2391



case,’ this in contradiction to the usual inducing procedure
for projective representations in Hilbert spaces where addi-
tional phase factors need to be inserted.’

It follows straightforwardly from (2.3) that

L&), .(8)=awsg)hv(8 s, &)D (Vs £:82)

(2.4)
where we have used the G-S—H-cocycle property’ of vis, g),
vis, gV 81 ', &) = vis, £,85). (2.5)

Comparing (2.4) with {1.8), using (2.3) again, and applying
the last part of Theorem 1.6, it is now easy to see that (2.2)
and (2.3} defines a projective K-representation in the space
(2.1) and with K-multiplier £2 given by

(281, &), = 0(vs, 8))vigr s, 82)). (2.6)
The above construction is of course nothing else than a gen-
eralization of the inducing procedure of Mackey.® The corre-
sponding representation will therefore be called a K-induced
representation. The important resuit is now the following
converse.

Theorem 2.1: Let U be any irreducible projective K-
representation with K-multiplier £2, then Uis equivalenttoa
K-induced representation.

Proof: 1t follows from the irreducibility that we may
assume without loss of generality that S~G /H. Let us
choose a set of fixed right coset representatives k (s)eG, seS.
Then trivially with (1.13) each g can be written as

g=ki(s)"'vis, g}k (g 's), VseS

and correspondingly the unitary operators in the families
L = {L (g)}, defined by the given representation U, can be
written

L,(g) = L,{k(s)”"vs, g}k (g 's)). (2.7)

We may expand this expression, using (1.8) (i) iteratively, and
we find

L,(g) =, '(k(s)™'Ms, gk (g 's)w, '(vs, glk (g™ 's))

@, (k(s)k (s)7')-L (K (S)Ly, (v(s, @)L, (K (g7 's))-

So

(2.8)

Using Theorem 1.6 we may also assume without loss of gen-
erality that 2 is already in the form (1.12} and normalized (cf.
Ref. 2). Using now (1.13) and (1.12) with g, = k (s}~ ' one
easily finds that, Vg,eG

o, (k(s)” \ g = ws‘,(k (So)» 82} = 1,
where we have used the normalization of £2. The other
phases in (2.8) can be seen to be trivial by similar straightfor-
ward calculations so that (2.8) reduces to

L,(g) = (L, (k(s))) 'Ly, (s, gNL, (K (g7 's)). (2.9)
Then using (1.10), with §’ = S and which then reads, in
components,

(VU'glV ), = V.UV, 1 (2.10)
one recognizes that, with V= { ¥} and
def
Vi =L, (k{s) (2.11)

the operators (2.9) can be brought back to the form (2.3), as
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the equivalent G-S-% (#)-cocycle then reads

L(g)=L,¥s, 8))
and this achieves the proof of the theorem.

This theorem thus implies that the problem of classify-
ing all irreducible projective K-representations of a group G
is reduced to the problem of the usual projective representa-
tions in Hilbert spaces of some closed subgroups H of G. In
the next section we shall see which subgroups are relevant
for our purposes.

(2.12)

3. SUPERSYSTEMS OF IMPRIMITIVITY

As in Ref. 1, and for a given physical system with a
given kinematical symmetry group G, not any K-space car-
rying a representation of G will be considered as a possible
state space for the system. We shall in addition require that,
in K, the observables are faithfully represented, in a sense
that we now want to make precise.

As mentioned in the Introduction, the state of the sys-
tem is characterized by the possible outputs of the various
measurements that we have chosen to eventually perform on
it. We thus have a priori a given set of observables {4 }. Let
I, denote the set of possible values for the observable 4, 1. e.,
the spectrum of 4. We now demand that, for each (Borel)
subset 4 of I, there exists an operator P4 in K which selects
the states having in actuality the property of having, for 4, a
value within A. It follows from the representation (1.2) of the
properties in K, that P7 should be a projection in K, i. e, a
family of projectors in the corresponding family of Hilbert
spaces

P ={P4)} (PL) ez (7). (3.1)

Furthermore, it should satisfy the following measure
theoretical properties:

(i} Pg =0, PL =1,

(ii) P2, =P35PL,

(i) PA,4 =SP4 for 4,4, if i#j (i e, disjoint)
el

and [ is countable. (3.2

In (3.2} the sum and the products are meant as sum, respec-
tively, products of the individual projectors in the families.
On the other hand it is also by its action on I" = {7, | that
the group G is defined. We thus correspondingly require
these mappings to transform covariantly, i. e.,

Pea=UlgPiU(g) " (3.3)

In the particular case where S is a singleton [hence K is a
(single) Hilbert space], the conditions (3.2} and (3.3j are noth-
ing else than the conditions of systems of imprimivity of
Mackey.” In analogy with this terminology we shall call in
general such mappings supersystems of imprimitivity {s.s.0.i.)
as in Ref. 1.

Example: Let Ac (S ), the Borel sets of S, and y , the
corresponding characteristic function. Then

Py ={yals¥1, } (3.4)

obviously satisfies (3.1) and (3.2). Moreover, using (2.2) one
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directly finds

UlglaU(g)™ ' =£(8xat(8)
= Xgar (3.5)
hence (3.4) also satisfies (3.3) and thus defines a supersystem
of imprimitivity.

We thus see with this simple example that S always
corresponds to one (or more) observable. On the other hand,
we have seen that it can also be associated with an homogen-
eous space G /H of G. This is nothing but a particular case of
a more general relationship between observables and homo-
geneous spaces that we shall also detail in the sequel.

Now let X and Ube given. Because we want to consider
elementary systems we may assume without loss of general-
ity that U is irreducible. Let then P be some s.s.0.i. based on
the Borel subsets of some G-space T. We may also assume
that the corresponding action is transitive {or else P would
define more than one observable). Hence 7" can be identified
with some quotient space G /H |, with H, = Stabz,, ¢, some
(arbitrary) element of 7.

On the other hand, if P defines an observable, T corre-
sponds to some subset of I". The relationship between both is
easy to recognize: H, = H,,, where y is some fixed value of the
observable correspondmg to Pand H, is its stabilizer.

We thus have, YFe Z (T ), projections P “'in K satisfying
(3.2) and (3.3); hence, in each Hilbert space #°, we have

(1) P?:“Oyf{,f Pl= Yo
fiiy I =PIPE,
(iii) (P°7), = SP,", F|F; for i#),

i

(3.6
as well as the covariance condition

(U(g)"'PTU(g), =P% ™. (3.7)

These last equations can be rewritten, using the decomposi-
tion of Uin (1.6), as

Lg)'PiL(g)=
where we have for simplicity omitted the imbedding maps of
Hs in 7, induced by £( g).

Cons1der now the double restriction of (3.8) to some

elements s,€S and for the group elements heH C G with
H = Stabs,. We obtain

L, (h)'"PIL (h)=P; . (3.9)

peF (3.8)

gs)

As (3.6)is true for each s, hence for s,, we thus have, together
with (3.9), that this restriction, i. e., theset {P{ , FeZ (T )} is,
in 2, , a usual system of imprimitivity of Mackey for H on
T. In order to apply the theorem of imprimitivity we, howev-
er, need one more property, namely the transitivity of the
action of the group. But this property is in general lost in the
above restriction. In order to get out of this difficulty we
have to analyze in some more detail the action of Hon T..
Under the action of H, the space T splits in general into
disjoints orbits { 7,,, ueM, with M some index set}. It is easy
to verify that this set M can be identified with the set of H:H |
double cosets: each ¢ can indeed be written as /{2 }-2,, ¢, fixed,
[ (¢ ) some coset representative of G /H,, hence tand ¢’ are in
the same orbit if /(¢ }-t, = h-l (¢ ')-t, for some h,€H, i. e., iff
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[{t)=HhiI(t") Ay,
i.e., iff/(t)and /(¢') are in the same H:H double coset.

Then let ¢,€T,,, some u, and HY = Stabz,, then one
easily recognizes that T, =H /HnH .

Proposition 3.1: The coset space 4 /HNH } can be
identified with a (closed) subset S'4 of S, i. e., one can write

H% = U (H*H )k '(s),

seS§

where k ’(s) are some coset representatives of G /H.

Proof: Let s be arbitrary, ¢, fixed in T, and H}

= Staby,,. If k (s)t, €T, then no S heH can brmg it back in7,
because the orbits are d1s10mt Hence the equation

h-k (s)t, = t, has no solution k. If, however, k (s)t, €T, then
k(s)t, = ht, for some k, hence (h ~'k [s))eH ;. We may
chooseh 'k (sjasnew coset representative k ‘(s)and obvious-
ly (H4nH )-k'(s)C H%. Denoting by S# all seG /H, with this
property we thus have

(3.10)

U (HENH K (S\CHY.

seS ¢
Conversely, each h cH*# can be written as /-k (s) and as
h-k (s)t, = t, onehasseS hence finally the result asserted in
(3.10).

Then let G, denote the stabilizer of the whole orbit 7}, .
Obviously G, 2 H and we have the following.

Proposition 3.2: The coset space G, /H can be identified
with a (closed) subset S, of S, i. e,

G* =u, Hk(s),
where $¢ 2S5, V, eM.

Proof: gENG“ implies 4-geG *. Conversely if k (s)¢G * for
some s then there exists at least one t€7, such that k (s)t£T, .
But then A-k (s)t, €7, VheH because the orbits are disjoint,
hence there can be no element of G, in this coset. The condi-
tionseS* means i-k (s)€G,, YhcH, hence h-k (s)t,€T,,. There
thus exists an element / ‘eH such that h-k (s)-, = h "¢, and
(h "y~ *h-k (s\eH %; hence seS'.

We may now come back to (3.8), the restriction at some
8q, for H = Stabs,, of the arbitrary but given s.s.0.i. P. In
order to recover the transitivity property we restrict it fur-
ther to the Borel subsets of 7, :

(3.11)

P F,~P\¥,) F,eB(T,)CHT) (3.12)

This restricted mapping still satisfies the covariance condi-
tion (3.9) and two of the measure theoretical conditions (3.6)
(i1) and (3.6) (iii). It does, however, not necessarily satisfy the
first one, as for F,, = T, the image of (3.12) is not necessarily
the identity.

Proposition 3.3: Let s, be arbitrary but fixed and suppose
Fis some H-invariant Borel subset of T, then

P =41, withi=0ord=1.

Progf: 1t follows from (3.9) and the H-invariance that
P{ commutes with L_ (), VheH. But as U is irreducible it
follows from Definition 1.4 (ii) and the lemma of Schur that
P = A1, .That4 = 0or I follows from the fact that P*
is a pI'OJeCtOI‘ [(3.6) (i1)].
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In particular for the orbits T, one has thus

Pr=A,1,, 4,01} (3.13)

Proposition 3.4: There exist one and only one u,eM such
that (for s, fixed) 4, =

Proof: Suppose this equation holds for at least two {(dis-
joint) orbits 7, and T,.. Then from Proposition 3.3, as
T,JUT, is H-invariant and from (3.6) (iii) we find that P _~

=, +4, M . Asd, + 4, iseitherOor 1 4, and/l

cannot be both equal to 1 On the other hand, if all A, = 0
then P ==0 and it cannot thus satisfy the s.s.0.1. condmons
u Suchthat 4, =1

TuT,

Hence there is exactly one orbit T

Conversely, for a given orbit 7, there may be, howev-
er, more scS for which P ST =g

Proposition 3.5: The set S, for which P [ = 1, is the
same as the set .S, in Proposition 3.2, for u = u,,.

Proqf: As follows from (2.3) and from Theorem 2.1, we
may assume without loss of generality that L, (k (s)) = 1
so that, with (3.8), PF = PF, VseS, Fed(T). Using now
Proposition 3.5 we thus have

Pr=1, iff k(\F=T,, (3.14)
hence, with £ = T, , (3.14) reads
Plo=1, iff k(§T, =T,,

i. e, k(s)eG,, as asserted.

It now follows from (3.13) and Proposition 3.4 that P,
restricted, as in (3.12) on the orbit 7,, determined by this
Proposition 3.4, does satisfy all usual axioms of an s.0.i. for
H = Stabs,. As the action is now transitive T, =H /H'
where, as is easy to compute,

H'=H{nH.
Collecting all these results we now have proven the
following.

Theorem 3.6: Let P be a (transitive) s.s.0.1. based on
T=G /H |, for the irreducible projective K-representation U
of G, then P is given, up to equivalence, by

(3.15)

P(kmF)nT

Pi=pPiWF=pr {3.16)

where T, is the unique H-orbit in T for which PT oo=1y
Moreover the mapping (3.16) defines a usual system of i 1mpr1—
mitivity on &%, and based on H /HnH '*, with H it

= Stabr, some t. €T, .

The 1mportance of the above theorem lies in the fact
that P is thus completely determined by its restriction, at s,
on H aiid on some orbit 7, , and that this restriction forms a
usual system of imprimitivity.

The main point is now to reverse the procedure and to
show that each ordinary system of imprimitivity on 77,
gives rise to a 5.5.0.1. on K. Let us therefore suppose that we
have given s,€S=G /H, H = Stabs, and t,€T=G /H,

H, = Stabt,, and T, = H-ty=H /HnH,. Suppose further-
more that D is an irreducible representation of H in some
Hilbert space #7(D ), which is induced from HnH,, i. e., via
Mackey’s theorem of imprimitivity, that there exists an ordi-
nary s.0.i. Qbasedon 7, ,

Q:B(T, \—? (D)) (3.17)
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with Z(5°(D)) the set of all projectors in #(D ). One can
now consider the K-space

K= V (#D), (3.18)
seG /H

and, on K, consider (the irreducible) representation U de-
fined in (2.2j and (2.3),

U,(g) =D (vs, g))€,( 8)- (3.19)
In this framework we now define the following mapping:
P-B(T)>ZK) (3.20)
with
def
=Q k(T ). (3.24

Theorem 3.7: The mapping constructed in (3.21)is a
supersystem of imprimitivity for U in (3.19) on the space K
given by (3.18).

Proof: We have to verify in turn the conditions (3.6) and
(3.7) using (3.21) and the fact that Q satisfies the usual s.0.i.
propertieson T, .

@) Pl =Q(k(TnT,)=Q(T,)=1, VsandP?

=Q(BnT,)=0(8) =0

(ij) PP = @ ([k (S)F\nk ()FINT, ) = @ ((k (s)Fyinn
T, )k (s)Fzr\T”“ )) = PF. PE The product of two families of
projectors being the family of the product, this verifies the
condition (3.6) (ii).

(ili) Suppose F|F,, then k (s)F, |k (s)F,, Vs and thus
{k ()F,nT,, )|(k (s)F,nT, ). We thus obtain that P /%

= Q((k (s)F\Uk (3)F)T,, ) = Q ((k (F,T,, Ju

W (k (s)FNT, ) = Q ((k (S)F)NT, ) + @k (s)FynT )

=ph 4 ph: hence (3.6) (iii) is also verified, the sum of two
famlhes bemg the family of the individual sums.

{iv) It still remains to verify (3.7): Using the expression
(3.19) for U and the fact that Q is an ordinary s.0.i. for D, we
find

(U(g)PFU(g)~ ")y = D(vs, 8P D ~'(vs, g))
=D (vs, g)Q (k (g™ 's)FNT,, )D ~'(vls, 8))
=Q s g)lk(g's S\FNT, 1)
=Q ((vls, gk (8 'SIF)nT,, ),
where we have used that, as v(s, g)eH, it leaves T, invariant.

Now using the definition (1.13) of the cocycle v, i. e,
vis, 8) = k (s)g(k (g~ 's))~ ! and inserting in (3.22) we find

(U(glP*U(g)™"), = Q(k(s)gFnT, )
=P, VseS

(3.22)

and this achieves the proof of the theorem.

Example: As each representation of H is trivially in-
duced from itself, we have on 7°(D) with H = H | a usual
s.0.1. on the 1-point set s, with

Qlso) = 1y Q(ﬁ) =0,

Using the definition (3.21) one correspondingly finds, as
s.s.oi.on K, VE€A(G/H),

1 if sek (s)E
E_. Ens,) = { 0
P = QlsiEns) 0 otherwise ’
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hence

Pf= Xk(s)E(So) =xelk{s)” 'so) = Xels)
and we recover in this way the example given in (3.4).

It is useful to remark at this point that the subgroup H,
is uniquely defined by the corresponding observable only up
to conjugation. Different choices corresponding to different
H-H | double coset elements can give in principle different
(even possibly inequivalent) s.s.0.i. The choice of H | is, how-
ever, restricted by the following consideration. S always de-
termines itself as above one or more observables so that H is
the kinematical symmetry group corresponding to all the
remaining observables. The subgroup H, is then, for each of
these observables, uniquely determined up to conjugation by
some heH. The H:H, double coset element is then fixed.

Reversing the above procedure we thus find all allowa-
ble K spaces if we proceed as follows. In a first step, for each
subset of observables {B } C {4 | with corresponding kine-
matical symmetry subgroup H, HC G, we have to find those
projective unitary representations which admit usual sys-
tems of imprimitivity for each observable in { B } (and no
other). For this, we can use the theorem of imprimitivity of
Mackey and thus ask whether these representations are
equivalent to representations induced by the corresponding
subgroups or not. In a second step we construct U, the space
K, andthes.s.0.i.asin(3.19),(3.18), and (3.21), and we find in
this way all remaining observables.

The observables found in the first step are the usual
quantal observables as they correspond to spectral measures
in separable Hilbert spaces. The observables found in step 2
then play the role of superselection parameter or, in other
words, are of the classical type, as they commute with all
other ones and have a purely discrete point spectrum.

We shall see in the next section and in Ref. 4 how the
above procedure applies in concrete physical examples and
show then that the (quite mathematical) above framework is
indeed the physically relevant one for our purposes.

(3.23)

4. EXAMPLE

In this last section we shall thus consider a simple repre-
sentative physical example of application of the method
found in the last section. As previously mentioned the main
applications, i. e., the discussion of the classical and quantal,
relativistic and nonrelativistic states spaces for elementary
particles, will be treated in a separate paper.*

Consider therefore the two-dimensional phase space 2
with coordinates p and ¢. This space corresponds then to the
space " discussed in Sec. 3, as it contains the possible values
of the observables position and momentum. Let G be the
group of translations in p and q. This group is determined by
the physical postulates that there exists no absolute zero for
the position nor for the momentum. We thus have G~R?
with elements (w,a) and action

def

(w.a) p.g) =(p —w.qg — a). (4.1)

Let us now determine the possible state spaces for this
system.

Suppose first that both p and ¢ are classical in the sense
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of Sec. 3. Then H is trivial and 5, is one-dimensional
Vs = {p,q)efl. We thus have

K=V,q(C) (4.2)

and a state consists of a point ( p,g) and a ray in the corre-
sponding complex plane. This framework can thus be identi-
fied with the usual framework of classical mechanics in one
space dimension. The observables are straightforwardly ob-
tained as in (3.23) as given by

PAJ(P’Q) =X4p(P)f(P,4),

PAqf(P’Q) =X4q(q1f(p,Q), (43)

with 4p and Aq Borel sets on the real line and f{ p,q) any
state. The observables are thus given, as is usual, by the pro-
Jjections on the corresponding subsets o; the phase space.

Suppose then that either p or g is quantal, say g. Then
H=R and K = V(7 ,) with 7, carrying an irreducible
projective representation of R which admits an observable
position. But, as is easy to see, irreducibility implies that /%,
is one-dimensional whereas, by the Mackey imprimitivity
theorem, %°, admits an observable position if and only if it is
isomorphic to .2"%R). Hence there can be no solution in this
case.

Suppose finally that both p and ¢ are quantal. Then
H = G~R. The vector irreducible representations are one-
dimensional and, as above, they cannot thus admit observa-
bles for the position nor for the momentum. There is, howev-
er, one single family of projective representations in

K = YR (4.4)
with elements f(x), and which is given by

Ula) f(x) =f(x — a),

U(w) f(x) = explidxw) f(x), A€R. (4.5)
The observables p and g are given by the following spectral
measures:

Py S(X) = Xaglx) fx),

A

P, Flk) =y, k) Flk), (4.6)

~

with f(k ) the usual Fourier transform of f. Equivalently,
these observables are given by the operators

4f (x) = x f(x),

Bfix)= —id ~'d, flx) (4.7)
so that, with of course 4 = #~!, we recover the usual frame-
work of quantum physics in one space dimension.

We thus see by this simple example that our formalism
provides a very direct method which allows us to derive the
usual classical and quantal state spaces in a simple unified
way. Moreover these two solutions are seen to be the only
ones. We have not only built in this way a common language
for both frameworks but we have done it in a way which is
independent of the dynamics and which is only based on the
realization of the properties of a physical system, in accor-
dance with the points of view exposed in the Introduction.
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We apply a recently developed mathematical formalism to the kinematical classification of
elementary physical systems, more precisely to the derivation of the possible state spaces for single
(massive) particles and to their corresponding group theoretical interpretation. We show in
particular that in all considered cases, relativistic or not, we find in a unified way two solutions, a

quantal one and a classical one.

PACS numbers: 02.20. + b, 03.20. + i, 03.65.B2

INTRODUCTION

In a previous paper,' we have identified and analyzed
the necessary mathematical basis of a group theoretical
framework in which it is possible to treat simultaneously and
in a common language classical and quantum physics. These
two cases appear as two extreme cases of a more general
formalism where some observables are represented by self-
adjoint operators in Hilbert spaces (i.e., have a quantal be-
havior) whereas other observables are of the classical type as
they commute with all other observables (and have a purely
discrete point spectrum). Because of their physical interpreta-
tion we also call this latter type of observables superselection
variables or parameters. They should not be confused with
superselection rules and we do not use this latter terminol-
ogy in order to emphasize that we do not assume (and in fact
this is in general not true) that they correspond to conserved
quantities. The latter can anyway only be asserted when the
dynamics are known and our framework is precisely inde-
pendent of the evolution and of the interactions of the phys-
ical system.

In Ref. 1 we have analyzed in general and with group
theoretical arguments the structure of the possible state
spaces for a given physical system starting from the follow-
ing main considerations. The system itself is characterized
by a set of observables corresponding to the measurements
that we (eventually} perform on it. The usual physical equiv-
alence postulates correspond then to the action of a group,
called the kinematical symmetry group and defined by its
action on the possible values for the observables. This is suf-
ficient for the characterization of the properties of the sys-
tem and this is, as it should be, independent of the dynamics.
The dynamics appear in such a framework as a next separate
step corresponding to the description of the changes in the
properties, and not of the properties themselves. We shall
briefly indicate at the end of the present paper how this oc-
curs within our formalism.

This formalism is characterized by the fact that we con-
sider as possible state spaces (topological) direct unions (or
families) of Hilbert spaces. This is justified both from a prag-
matic point of view {as it covers classical physics when all
Hilbert spaces are one-dimensional, and quantum physics
when the union is trivial) and from a more fundamental point
of view as the result of an axiomatic approach.'
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The state spaces, for an elementary physical system, are
further specified by the following two main assumptions.
Firstly, they should carry an (irreducible) representation of
the above mentioned kinematical symmetry group. Second-
ly, they should admit a (sufficiently faithful} representation
for each observable corresponding to the physical system.
For the first condition we have appropriately generalized the
idea of induced representations in Hilbert spaces® and, for
the second, the idea of systems of imprimitivity.* In Ref. 1 we
have just made mathematically more precise all these
concepts.

In the present paper we shall apply the general math-
ematical results of Ref. 1 to a class of physical models, rela-
tivistic and nonrelativistic. We shall see in particular how, in
all considered cases, two and only two solutions appear in a
unified way: a classical one and a quantal one. This is quite
interesting not only for aesthetic reasons but more essential-
ly because the discussion of different models (classical or
quantal, relativistic or not) in a common language, where the
mathematical objects are the same and where the physical
interpretation is the same, is of fundamental importance for
the understanding of the results and of the difficulties en-
countered in each separate context.

For this last reason, and also in order to try to apply in
classical physics the succcessful group-theoretical approach
to elementary systems of quantum mechanics initiated by
Wigner, an increasing number of papers have recently been
published.® To our knowledge, however, it is the first time
that such an approach is not only descriptive (i.e., explores
the informative correspondences between different math-
ematical objects of different theories with the same physical
interpretation) but really derives these theories in a unified
mathematical language.

The present paper will be organized as follows. After a
brief reminder of the framework and of the procedure deter-
mined in Ref. 1 for the construction of the state spaces, we
recall the main characteristics of the case of spinless particles
following the results already obtained in Ref. 6. We then
consider the particles with (arbitrary) spin, relativistic and
nonrelativistic, and we extend the nonrelativistic models, es-
pecially in view of the discussion of nonrelativistic limits.
Finally, we briefly indicate some essential features concern-
ing the description of the dynamics in our framework.
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1. THE FRAMEWORK

Without entering into details (cf. Ref. 1), let us first very
briefly recall what the general framework is, and corre-
spondingly the method which can be extracted from the
main results of Ref. 1.

As explained in the Introduction we define the state
space of an elementary physical system as a space which
carries an irreducible representation of the kinematical sym-
metry group and which admits operators for each of the
corresponding observables.

As state spaces we consider direct unions, over some
Borel set S, of complex Hilbert spaces

K=V,

ses

(1.1)

The elements of K are thus given by some index s, and an
element in the corresponding #”, . To the kinematical sym-
metry group G corresponds an (irreducible] projective K-
representation U in the automorphisms of X, and this im-
plies' that to each group element g corresponds a permuta-
tion 7 in the index set S and a family of (anti-) unitary opera-
tors { U i ¥ ;—H |- In Ref. 1 we have shown that U is
always equivalent to a representation of the following form:

U,(g) = D(vis.g)) & (&), (1.2)

where £ is an action of G on S and where D is some usual
projective representation, with some multiplier w, in %7,
$,€S arbitrary but fixed, for H = Stabs, C G {the stabilizer of
an arbitrary point 5,€5 ). The cocycle v in (1.2} is defined
{writing gs for the image of s under the permutation induced
by gon S)by

Vis,g) =k (sig(k (g™ "'s)~", (1.3)
with k (s) some {fixed) coset representative of the unique coset
classin G /H satisfying the equation & (s) ™ 's, = sforagivens:
we indeed may assume that the action of G on S induced by =
is transitive if U is irreducible. The representation (1.2} is
projective and this means, in K, that

U g, 1,(82) = o,(21,8:)U,(8:82)s

where w, (g,,8,} is a phase factor which may depend on g,,2,
and on s. These phase factors are given, from (1.2}, by

(1.4

®,(81:82) = @ (V(s,g, ) V(g '5.8:)) (1.5)
and conversely this expression is, up to equivalence and as
shown in Ref. 7, the most general solution of the correspond-
ing cohomological problem.

Each observable A is represented in this formalism by
mappings from the Borel subsets of the set I, of its possible
values (i.e., the spectrum) in the projections (i.e., in the fam-
tlies of projectors) in K,

P-A 2 (K) (1.6)

with two kinds of conditions: some measure theoretical
properties as a map on I, as well as a condition of covar-
iance under the representation U (1.2) carried by the state
space K (see Ref. 1 for details). In fact these conditions are
nothing but a straightforward generalization of the condi-
tions of systems of imprimitivity of Mackey.* If K is single
Hilbert space, the mappings (1.6) are then the spectral mea-
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sures of the corresponding self-adjoint operator, and if each
Hilbert space is one-dimensional, these mappings corre-
spond to characteristic functions in S. The most general so-
lution for these generalized systems of imprimitivity was
found in Ref. 1 to be equivalent to

P(4) = Qk(s)AnT), (1.7)

where Ae % (", )., =G /H, for some subgroup H,C G and
T=H/HnH,CI,, and where Q is an usual system of im-
primitivity in 7", for H = Stabs, and for the representation
Din (1.2).

The method that we could derive from these general
results is then the following. One obtains all state spaces for a
given set of observables (defining the physical system under
consideration) with a given kinematical symmetry group G
(defining the symmetry postulates) if one proceeds as
follows.

For each subset of observables {B } C {4 | with corre-
sponding kinematical symmetry subgroup HC G, find first
those (usual projective unitary) representations D which ad-
mit usual systems of imprimitivity for each observable B and
no other.

For each solution found in this way construct the space
K asin (1.1} with S = G /H, the representation U as in (1.2)
with £ the canonical action of G on S, and finally with (1.7)
for the observables.

The observables found in step 1 are the usual quantal
ones as they correspond to self-adjoint operators in separable
Hilbert spaces whereas the ones found in step 2 play the role
of superselection parameters or, in other words, are of the
classical type as they commute with all other ones and have a
purely discrete point spectrum.

The calculations themselves are based on the same prin-
ciples as the short example discussed at the end of Ref. 1, and
are quite straightforward applications of standard group
theoretical methods and of a simple generalization to projec-
tive representations of the arguments used and explained in
more detail in Ref. 6. We shall therefore not enter into de-
tailed calculations for the various physical models that we
shall consider but we shall rather list the results and discuss
these solutions from the physical point of view.

2. SPINLESS PARTICLES

As a first example, let us briefly consider the case of
spinless particles {already considered in Ref. 6 to which we
refer for more details).

A. The nonrelativistic spinless particles

In this case the physical system is characterized by the
observables position g, momentum p, and time ¢. The set I
(i.e., the collection of all possible outcomes of all observables)
is thus isomorphic to R’. The kinematical symmetry group G
follows from the following postulates. There exists no abso-
lute zero for the position, no absolute zero for the momen-
tum, no absolute zero for the time, and no privileged direc-
tion. This group G, that we have called the Newton group, is
thus generated by the following operation on I
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(@,ps }—(q + a,p,r), acR’

(@,p,2 )} —{q,p + W,2), weR’®

{q,p,? )—’(q’pJ + a()), a’cR

(qspst )—{aq,ap,t), a€SO(3). 2.1
The group elements can thus be labeled by (w,a’% a,a) and the
group product is given by

(w,a%,a,a)(w,a” a",a’)

(w+aw,a®+ 0% a + aa'aa'). (2.2)
This group admits two and only two solutions as state
spaces, i.e., two and only two spaces K as in (1.1) that carry
an irreducible representation U of this group as well as su-

persystems of imprimitivity for each of the observables posi-
tion, momentum, and time.

1. The classical particle

In this solution the superselection variable set .S is given
by I itself, hence the stabilizer of a point s,&S is the rotation
group and thus

K=V 7%, (2.3)

where 7, are all one-dimensional and carry the one-dimen-
sional trivial representation of SO (3). The corresponding
representation U of G is directly obtained from (1.2) and the
defining representation (2.1) as given by

(U(g)1//)y = ¢g ‘yr (24)
where ¢, €7 ,and ¢ = {¢, } isany statein K, i.e., ¥, €U(1)
for some ¥, = {PgsQo,e} and O otherwise. Correspondingly,
and for this state 1, the observables are simply given by the
following characteristic functions [as in (3.23) of Ref. 1]:

PAp lz’ = XAp (p())¢’

Prt = X aq(00¥, (2.5)

Pytb = yaltolt,

with Ap,Aq, and 4¢ Borel sets in R®, R?, and R, respectively.
The solution given by (2.3)—(2.5) can thus in an obvious way
be identified with the usual framework of a classical single
particle.

2. The quantal particle

In the only other solution, S is isomorphic to the time
axis and can thus be identified with the coset space

S=GH, H, ={w0aa). (2.6)

The state space K is thus the direct union over this S of
Hilbert spaces that carry an irreducible representation of H,
in (2.6). These spaces are V¢ isomorphic to .#’}(R? and thus

K = V(ZYRY),. (2.7)

eR

The representation U of the Newton group G is given by
Uwi,(x) = exp(ilwx)y, (x),
U@y, (x) = ¢,(x — a),
U@V, (x) = ¢ _ o(x),
Ula) ¢,(x) = ¢.(a™ 'x), (2.8)

where 4 is an arbitrary nonzero real representation label. It
directly follows from (2.8) that
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U(w)U(a) = explidiwa)U (a)U (w) (2.9)

so that, identifying A with the inverse of #, we recover the
usual Weyl commutation relations. The observables position
momentum and time are respectively given by

PAq ¢t (x) = XAq (X) ¢t (X),
Py, 0, (k) = y (k) &, (k)
Py (x) = xu.(t) ¥(x), 2.10)

with 12r(k} the usual Fourier transform of ¥(x). The first two
observables in (2.10) can also be written in terms of the usual
following operators:

a¥,(x) = x ¢,(x),

PYi(x) = — ifid, () (2.11)
This solution can thus be identified with the usual frame-
work of quantum mechanics, up to the additional presence
of time as an observable, due to the slightly more general
state spaces K in (1.1), with respect to single Hilbert spaces.
Such a generalized state space (1.1) is thus of direct use even
for usual quantum physics, for problems, where time ap-
pears explicitly. Let us also remark here that this time ob-
servable has a priori nothing to do with an evolution param-
eter: it only characterizes the date, the measure of a clock,
and not the changes of the system. In fact an evolution pa-
rameter, that labels the changes of the state, is not even an
observable, as an observable corresponds to a property of the
system, hence characterizes a state and not the changes of
the properties.

Finally, let us also remark that the representations (2.8)
is not characterized by a dynamical type relationship as was
the case for the Galilei group approach where® the represen-
tations are such that

E — (1/2m)p* = const. (2.12)

This is important because a relation like (2.12) in fact already
implies that the theory will strictly speaking only describe
free particles.

B. The relativistic spinless particles

In the relativistic case, the observables are the 4-posi-
tion ¢** and the 4-momentum p*. Hence I" = {(g,p)} =R®. As
symmetry postulates we assume that there exists no absolute
zero for the space-time position, no absolute zero for the
momentum (i.e., there exists no frame which is absolutely at
rest), and no privileged Lorentz direction. Here again, the
kinematical symmetry group is not a symmetry group for the
dynamics even for the free particle, but it is a symmetry
group for the description of the properties, i.e., of the state of
a particle (in interaction or not). The group which is generat-
ed by these operations and which has been called the Einstein
group® is thus generated by the following operations:

(g.p)—lg +a,p), acR*
(g.0)—lgpr + w), weR*
(g.0)—{Aq,Ap), A€SO(3,1). (2.13)

The group elements are thus labeled (w,a,4 ) and the group
products reads
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(waAw'a' A')=(w+ Aw',a + Aa",AA"). (2.14)
Here also, and the distinction has now more important con-
sequences, the time observable is purely kinematical and has
thus a priori nothing to do with an evolution parameter.

This group admits also two and only two solutions for
the state spaces.

1. The classical particle

As in the nonrelativistic case S is given by the phase
space I itself with the Lorentz group as stabilizer of an arbi-
trary point and thus

K=V, (2.15)

where the 57, are all one-dimensional and carry the one-
dimensional trivial representation of the Lorentz group. The
corresponding representation U of the Einstein group is di-
rectly given from the defining representation (2.13) and
reads, with ¥ = (g,p)el" and g = (w,a,4 ),

(Ugep =¥a-14—arr o — > (2.16)

with ¢, , €U (1) for some {g,,p,) and zero otherwise. Each
point of I" thus defines exactly one state [one ray in U (1)} and
this makes the identification with the classical phase space as
state space, i.e., with the usual classical framework, com-
plete. The observables position and momentum are corre-
spondingly given as previously in {2.5) by characteristic
functions [as again follows from (3.23) of Ref. 1]:

PAq wy = XAq (QO)‘/’y ’
PAp ll’y = XAp (P0)¢y,
with Aq and dp Borel sets in R*.

(2.17)

2. The quantal particle

In this solution S is a singleton, i.e., the direct union
{1.1) is trivial and K is a single Hilbert space given by

K= %R, (2.18)
with the following representation of the Einstein group:

U (whp(x) = exp [~ 'g,., wx* Tix),

Ula)g(x) = $ix — a),

UiA ix) = (4 ~'x), (2.19)

where g, has signature (—, +, +, + )and where #~ ' here
also appears as a representation label. The representation
(2.19) satisfies the following generalized Weyl commutation
relation:

Uw)Ula) = explifi~'g, w'aU(a)U (w). (2.20)

The observables position and momentum are, respectively,
given by the following spectral families:

P, ¥ix) = ¥a, (x)¥ix),
Pa, ik ) = xa, Kk )ik ), (2.21)

where the characteristic functions are as in (2.17) and where

Pk ) = (zﬂﬁ)—zje* Ak 0d . (2.22)

Equivalently these observables are given by the self-adjoint
extensions of the operators
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§“Ylx) = x*¢(x),

PYix) = — ifg"d, Yix). (2.23)
In this model, and in contradistinction to the usual case, the
space-time position operators always exist and their (purely
continuous) spectra are simply given by the space-time
variables.

On the other side we can also remark here that the
above representations are, analogously to (2.12), not charac-
terized by an invariant of the form p? = m?. We may thus
here also hope that the corresponding dynamics will allow
description of more than only free particles.

Finally, let us also remark that the states are not trajec-
tories in space-time but, as elements in .#" *(R*), really corre-
spond to the events of Einstein. This is important because if
the states are the trajectories, the dynamics only list these
trajectories but nothing really changes, nothing really moves
along these trajectories. Moreover it is difficult to speak of
{(quantum) probabilities in such a scheme (see also Refs. 2 and
9 on these aspects). In our formalism, however, the states are
really capable of motion, hence of evolution, in space-time.

3. PARTICLES WITH SPIN

A. Nonrelativistic particles

The introduction of a new observable for the spin in the
previously obtained nonrelativistic models, both classical
and quantal, is very straightforward. This is so because in
both cases the rotation group appears in the stabilizer of any
point in the superselection parameter set.S. We obtain for the
classical particle

wyec2a+l' K= Vr(C20+l)Y (31)
and the representation is the same as in {2.4) except for
(Ula)), = (D"(a) ¥)s (3.2)

where D “)is an irreducible spin o representation of the rota-
tion group. This shows that the classical particle is compati-
ble with an observable spin or, in other words, that it is possi-
ble to consider models where only the spin has a quantal
behavior whereas the position and the momentum are both
treated as classical observables.

The quantal solution can be generalized in the same
way and we obtain in place in (2.7)

K=V (ZLR,C¥ 1Y), (3.3)
the representation being as in (2.8) except for
(Ula)(x)), = (D a) ¢la™'x)),. (3.4)

These solutions (3.1) and (3.3) for the state spaces are, here
also, the two only ones.

We can of course ask ourselves in which way it is possi-
ble to express the observable spin in a language completely
similar to the one of the observables position and momen-
tum, i.e., in terms of systems of imprimitivity (cf. Ref. 1). It
turns out that this is possible if one observes that the corre-
sponding measuring (Stern—Gerlach) apparatus in fact
breaks the rotation invariance and if we consequently postu-
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late that the restriction of the representation U (G ) to the sub-
group H, that leaves an arbitrary space direction n invariant
admits a system of imprimitivity based on the spin spectrum
[i.e., on a (20 + 1) point discrete set]. We shall not detail
more this aspect here, just mentioning the quite remarkable
fact that the only corresponding systems of imprimitivity
which are then transitive, hence elementary, are for the parti-
cles of spins O or } (i.e., corresponding to the only massive
particles which are considered as stable).

B. Relativistic particles

It is obvious that the just explained generalization does
not apply to the relativistic case, as the relevant isotropy
groups that appear both in the classical and in the quantal
models contain the full Lorentz group whose nontrivial irre-
ducible projective unitary representations are all o -dimen-
sional, as is well known.

This difficulty can be avoided if one observes that in
each inertial system the measure of the direction of the time
axis commutes with all other observables. This is not in con-
tradiction with the principle of relativity: the mixing of time
and position observable values under changes of reference
frames does not hinder that time has (trivially), in each refer-
ence frame, a role which is distinct to one of the space coordi-
nates. Time is in fact measured with a clock, space position
with a measuring rod. The measuring devices themselves
reflect this essential difference. We can formulate these con-
siderations as follows.

Postulate: In each Lorentz reference frame the direction
of the time axis is a superselection parameter.

The direction of the time axis can be characterized by a
unit vector A inside of the light cone, i.e., by a point in a unit
upper half hyperboloid in space-time. It follows then from
the above postulate that the classical and quantal states
spaces can be decomposed as

K=V,K;, (3.5)

the direct union being taken over all possible time directions,
i.e., over the above mentioned upper half hyperboloid.
Each X; should thus carry (as follows from Ref. 1) an
irreducible representation of the stabilizer of the corre-
sponding value of the superselection parameter. These stabi-

lizers are given, up to isomorphism and for an arbitrary unit -

vector 7, by
H,={waA,}, (3.6)

where (w,a)eR* X R* and A 4, Stands for the Lorentz transfor-
mations which stabilize the unit vector 4, = (1,0,0,0), i.e., for
the rotations.

Let us remark here that a quite different interpretation
based on the Stern—Gerlach measuring device itself has pre-
viously been given®!° with, however, exactly the same math-
ematical consequences.

Under the above assumptions our formalism again
leads in a unified way to the allowable state spaces and we
again find a classical solution and a quantal one. For the
classical particle we obtain

K; =VaCtY), (3.7
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and the representation of the Einstein group is given, for

10 = {¢ﬁ,y9l¢&,yecza+ 1’?, = (q,p)ERB}, by

(U (w)w)ﬁ,q,p = lpﬁ,q,p —w?

(U(a) ¢)ﬁ,q,p = ¢ﬁ,q —ap? (38)
(UiA)Wagy =DULA " ALA AN Pp 24194100
where L (#) is some coset representative which maps the vec-
tor /i, onto the vector 4 and the spinor rotation is thus noth-
ing else than the well known Wigner rotation (with o
arbitrary).

Analogously, the quantal particle is given by the same
(3.5) with now, in place of (3.7),

K, =, = (LYR, C+Y),. (3.9)

The representation U for (any) spin o is given by

(U (w) ¥ix)); = (exp[ifi~ g, w'x" J¥(x));,

(Ula) ¥(x))s = (¢x — a))a,

(UiA) glx))y = (DAL (A)™' A LA T'A) YA ~'x)), 5.
{3.10)

The observables p and g are as before, whereas the observable
spin can be expressed in a straightforward way using the
usual spin matrices (see Ref. 9 for details).

We shall mention some remarks concerning the physics
of these models in Sec. 5. For the moment we want to present
other examples of applications of our formalism.

4. GALILEAN BOOSTS AND NONRELATIVISTIC LIMITS

One of the (ultimate) goals of the present analysis is of
course to understand better (and thus to solve) some of the
well known difficulties of relativistic quantum dynamics and
of field theories. With respect to this goal, it is of course an
important advantages of our approach that, as we have seen,
we have now really a unified mathematical formalism for the
discussion and the interpretation of the physical quantities
under consideration: as already emphasized, both the math-
ematical description and the interpretation of the physical
objects is the same in all considered models, relativistic or
not, classical or quantal. We can take advantage of this fact
and compare effectively the relativistic quantum model with
its classical and its nonrelativistic limits, and with the corre-
sponding classical and nonrelativistic models, respectively.
For that purpose we, however, obviously have to enlarge the
observable space I in (2.1) with the observable energy £ and,
correspondingly to (2.13), with the transformations'’

ESE +uw® weR (4.1)
and the Galilean boosts

q—q — VI,

E-E —pv, veR> (4.2)

We can apply in a straightforward way our formalism to this
new example, and obtain again all possible state spaces for
the corresponding physical system. Dropping again the de-
tailed calculations, we find here also two and only two
classes of solutions: a classical one with X the direct union
over the 8-dimensional phase space {(¢,q,E,p)}of (20 + 1)-
dimensional Hilbert spaces, and more interesting at this
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point, a quantal solution: we find for the latter a single direct
integral Hilbert space

K= F;ﬂa dx, (4.3)

with 74 ) the carrier space of an arbitrary representation 4
of the homogeneous Galilei group, i.e., either an infinite di-
mensional representation on .#°? of the two-dimensional
sphere, or an usual spin representation®:

A (v,a) = D). (4.4)

In this latter case, the representation is given in
‘_(1‘/2 (th’ C2d+ I) by

(U (wh)x) = explifi~'(wx — wt )Jgix),

(U (@))x) = ¢lx — a),

(Ula)#)lx) = D Ya) dit,a ' x), (4.5)

(U (vid)lx) = gle.x + vt ).
Comparing this solution with the (spinless) relativistic model
givenin (2.18)and (2.19) one sees that the state spaces are {for
o = 0) essentially the same; only the groups and the group
actions are different and this makes the comparison easily
possible. In contradistinction with the relativistic case, in the
case 0 #0, the spin enters here in the scheme in a more direct

way. The observables position and momentum are, in this
model, as before [see (2.11)] and for ¢ and E, they are given by

;: t ]]‘K’

E=if d,. (4.6)

The observables are thus also the same as in the relativistic
case.

There is another possibility which is directly suggested
by the corresponding relativistic problem: it is to consider, as
in our previous results, the direction of the time axis as a
superselection variable. This is even more natural if one real-
izes that there is in fact nothing typically relativistic in this
assumption.

If we adopt this point of view, then, remarking that the
variable  is by definition the time coordinate of a given event
in space-time, we can identify the superselection variable set
with the three dimensional vector space ¥ of the pure Gali-
lean boosts. We can correspondingly define in the space-time
a three dimensional (horizontal) surface of coordinates (1,n),
where each n corresponds to a point in ¥. We then find for
the state space

K=V,

nelR

K, (4.7)
where K, carries an irreducible representation of the stabi-
lizer of the vector n. The action of the group on this space is
easily found to be given by, for g = (a,w,v,a),

gn=an+yv (4.8)
and the stabilizer H, of the vector n is thus, up to isomor-
phism, given by

H, ={(aw0,a)}. (4.9)
In the more interesting quantal case, we find in the same way

as before the following solution for the group representation:
each K, is isomorphic to ¥ }R*,C** * ') and the representa-
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tion is given by
(U whix)), = [ exp[ifi~"(wx — w’t)]¢(x)],,

[U(@x)), = [¢ix —a)l,,
LU vgx], = [lex + Vo).,

(Ula) ¥ix)]. = [D ) ¢t @™ 'x], -

In other words, we have the same situation as before: the
state spaces are essentially the same as in the relativistic case,
only the groups and the group actions are different, whereas
the hyperboloid of (3.5) is degenerated in a (horizontal) plane
in space-time. Moreover, one sees in {4.10) that the Wigner
rotations of (3.10) are now simply reduced to the rotation
parts of the corresponding group elements. The observables
are also the same as in the relativistic solution.

Let us finally remark here also that, if in place of (4.2) we
had assumed that the energy was left unchanged by a Gali-
lean boost, i.e., if we had considered the energy as a scalar
quantity in place of considering it as the fourth component of
a vector, we would have obtained in the quantal case a state
space given by

K=V (LR, 7)), (4.11)

with .74 ) as in (4.3) and the representation is, in the sim-
plest spinless case, as in (2.8) with, in addition,

(U(w()) l/}(x}}az = (w(x))E 4w
(U () X)), = (WX + V1 ))g, -
The observables p and q are thereby as in (2.11) and the ob-
servables E and r are as in the classical models. This last state

space seems, however, less interesting when one considers
the dynamics.

(4.10)

(4.12)

5. ON THE DYNAMICS

As previously emphasized, the framework of the pre-
sent paper is purely kinematical, in the sense that the con-
struction of the state spaces, the state spaces themselves, and
the observables are defined independently of the dynamics.
We have precisely exhibited and used those aspects of the
concept of an elementary physical system which are inde-
pendent of the interactions and of the evolution. We insist on
this point, because it is one of our main motivations to con-
struct a (group-theoretical) formalism in which it is possible
to describe more than only free particles.

Although it is thus beyond the scope of this paper, we
would like, for clarifying these points of view, to briefly
sketch how the dynamics enter into the framework discussed
in the present paper, from a very general point of view (see
also for this discussion Ref. 12).

The evolution corresponds by definition to the changes
of the states, hence it is specified (if reversible) by a two-
parameter family of automorphisms of the state spaces. For
specifying the dynamics we thus have first to introduce the
parameter itself, an evolution parameter, that we call 7, the
dynamical time. Such a parameter cannot be itself an observ-
able as explained previously and it cannot thus enter into the
dependence of the generator of the evolution. Hence the two-
parameter farnily reduces to a one-parameter group. Togeth-
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er with some differentiability conditions we are thus led, in
the space K (1.1) of states, to the following generalized Schro-
dinger equations coupled with classical evolution equations
in the superselection variable set S:

§=2Xls),
ia‘r¢x =H_v¢s’ (51)

where the dot means differentiation with respectto, {H, | is
a family of self-adjoint operators and X is a vector field on S.
For illustration and corresponding to the particle given in
(2.7) we may have (see Ref. 2)

(=1,
fﬁrlﬁx =iat¢l =Ht¢t’ (52)

where H, is some usual Schrodinger Hamiltonian in each of
the Hilbert spaces of the family (2.7). Correspondingly, in the
here more interesting relativistic case, the evolution is char-
acterized by a single Hamiltonian in the case (2.18) or by a
family of Hamiltonians in the case with spin, the latter being
coupled with a classical evolution equation for the param-
eter A. Examples of this kind of relativistic Hamiltonians
acting on the state spaces discussed in the present paper have
been extensively studied in recent years (see, for examples,

Refs. 9-13). In particular such Hamiltonians have been pro-

posed for the interaction of single particles with external
electromagnetic fields {e.g., for the spectrum of the Coulomb
field problem'*} but also for the description of two-body
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interactions (in particular for the two-body H atom or for the
positronium resonances '>¢ with, in all considered cases, a

very good agreement with the experimental data. As is well
known, the no-go theorem of Currie'* does not allow consid-
eration of this last kind of problems in the usual framework.
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Equivalent eigenvalue problems in real, complex, and quaternionic Hilbert spaces are discussed. [n all cases a
compact syminetry group is assumed to exist, in the complex case also an antiunitary operator 6 commuting
with both the self-adjoint operator and the elements of the symmetry group and satisfying ©% = +1. It is
shown that the extra degeneracies caused by the existence of O can also be obtained by consideration of an

equivalent eigenvalue problem in a noncomplex Hilbert space.

PACS numbers: 02.20. + b, 03.65.Fd

1. INTRODUCTION

The purpose of this paper is to show that representa-
tions of groups in real and quaternionic Hilbert spaces
can be as useful as the familiar complex representa-
tions and are by no means more difficult to handle, The
study of these representations was initiated by the fol-
lowing example: In lattice dynamics one is given a real
symmetric matrix (the matrix of force constants) the
elements of which appear as coefficients in equations of
motion for the basic quantities p, (momenta) and y,
{displacements of lattice constituents), Although this
set of linear differential equations of first order can be
solved as it stands it is desireable to pass from the p’s
and y’s to real linear combinations r, and z, (normal
modes) and to consider a general solution as superposi-
tion (= real linear combination) of the r’s and z’s,
which undergo harmonic motions. To find the proper
linear combinations ry, z, and the corresponding fre-
quencies one has to diagonalize the real symmetric
matrix, which amounts to finding a complete set of
eigenvectors (= real column vectors) or the correspond-
ing (real) orthogonal matrix. This program is greatly
simplified by exploiting the results of representation
theory since there exists a group of orthogonal ma-
trices (reflecting the symmetry of the crystal) which
commute with the matrix to be diagonalized. Assuming
the eigenvalue problem to be already solved it becomes
obvious that all maniupulations to simplify the eigen-
value problem and to explain the degeneracies of the
eigenfrequencies should be performable in the real
Hilbert space consisting of the real column vectors.
But to apply the machinery of group theory as it is
known, for instance, from electron-band theory a de-
tour through the complex Hilbert space consisting of
complex column vectors is necessary. The results ob-
tained using complex representations of the symmetry
group are then (i) a set of eigenvectors which are in
general complex; and (ii) a relation between the mini-
mal degeneracies of the eigenfrequencies and the di-
mensions of the complex irreducible matrix represen-
tation. To obtain real eigenvectors (the only ones ad-
mitting a direct physical interpretation) and a more
satisfactory explanation of the degeneracies, complex
conjugation is introduced as an antilinear operator
commuting with the real symmetric matrix. If this
extra symmetry is considered along with the one re-
flecting the crystal’s symmetries one finds (i) that the
eigenvectors can be chosen to be real (which was al-
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ready clear from the beginning); and (ii) that the mini-
mal degeneracies are doubled in some instances.! This
two-step procedure originating from the classic paper
of Maradudin and Vosko? is now standard in the litera-
ture on lattice dynamics® and is also found in the com-
puter-adapted version of the theory.* But it is by no
means the only way to the desired results. For, as has
been shown elsewhere® for two specific examples and is
describedinfull detailinthis paper, the theory of group
representations in real Hilbert spaces leads directly to
real eigenvectors and the minimal degeneracies {being
equal to the dimension of matrix representations irre-
ducible over the reals), and all this is achieved by
means of linear operators only.

The approach suggested here is not only more direct
than the usual one but also more satisfactory regarding
the foundation of the minimal degeneracies. The rea-
son for this is that although Maradudin and Vosko de-
noted the operation of complex conjugation as “time
reversal symmetry” on formal grounds only® this term
was taken literally by subsequent workers in this
field.** However, a short reflection shows the only
meaning of this symmetry to be that a complex linear
combination of the p’s and/or y’s satisfies the same
equation of motion as the complex conjugate linear
combination irrespective of whether the basic quantities
p;, ¥, are real-valued functions (classical mechanics)
or operators or their expectation values (quantum
mechanics). It is only in a related problem, namely the
solution of the Schroddinger equation for the lattice con-
stituents, that the term time reversal may be appropri-
ate. But as far as the eigenvalue problem of the Hamil-
ton operator is concerned this symmetry only means
that the eigenvectors can be chosen to be real and that
the degeneracies of the eigenvalues are again related to
the real irreducible representations of the symmetry
group. (This result can also be obtained restricting the
complex Hilbert space to a renl one; see Secs. 3A and
3C). It is only the part of the eigenvalue problem be-
longing to the subspace of 1-phonon-states, which are
equivalent to diagonalizing the matrix of the force con-
stants; more-phonon-states transform according to the
symmeirized powers of Kronecker products of the
(real) representations found there.

In the following we also discuss eigenvalue problems
and group representations in quaternionic Hilbert
spaces. As in the real case, the corresponding prob-
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lem in a complex Hilbert space is characterized by the
existence of an antiunitary operator § commuting with
the self-adjoint operator and all the elements of the
symmetry group, but now satisfying §°= -1 instead of
6*=+1 (real case). The mere fact that for = —1
there exists an isomorphism between the operators in
the complex Hilbert space and the operators in a quat-
ernionic Hilbert space of half the dimension of the com-
plex one entails a doubling of degeneracies for the com-
plex eigenvalue problem and is hence a variant of
Kramers’ degeneracy theorem.’

The existence of isomorphic operator algebras in
real, complex, and quaternionic Hilbert spaces, which
is basic to our analysis, is not a new result. The
cases, where one of the Hilbert spaces is real (cases
3 and 4 of Sec. 2) were treated by Stueckelberg and
Guenin® and the relations between operators in complex
and quaternionic Hilbert spaces (case 2 of Sec. 2) have
been noticed by Chevally® and extensively discussed by
Jauch® and collaborators. The main difference between
their investigations and the following discussion is that
they were interested in the foundations of quantum the-
ory whereas we use this equivalence to simplify eigen-
value problems and to relate the degeneracies found
there to representations of the symmetry group. A
similar remark applies to group representations in a
quaternionic Hilbert space. The reduction of a complex
representation of the second kind to two identical quater-
nionic representations appearing here as one of the in-
termediate steps (see Secs. 5 and 6B) has been given
by Finkelstein et al.'® (using a related result of Fro-
benious and Schur'!) but this result has not been used in
any application. Apart from its different intention, the
present paper extends the above cited results and the
traditional approach in the following respects: (i) A
sufficient condition is given to guarantee the existence
of the operator isomorphism for infinite-dimensional
Hilbert spaces (“densely defined”) operator algebras
(see Secs. 2C and 6A); (ii) the degeneracies are related
to representations of the real group algebra in real and
quaternionic Hilbert spaces; and (iii) in some of the re-
maining eigenvalue problems the number of real para-
meters is shown to be half the number appearing in the
usual approach (this might be of interest for numerical
calculations).

We tried to write this paper in a way that makes it
readable to the nonspecialist. To this end, the general
theory of noncomplex group representations was de-
ferred to a companion paper'® and only that part which
is of relevance here was retained. The same purpose
serves the detailed summary of the basic mathematical
concepts (fields, Hilbert spaces, operators and their

matrix representations) given in the next section, In
Sec. 3 the equivalence of eigenvalue problems is stated
and illustrated by well-known examples (real Hamil-
tonians, spin-orbit interactions). In Sec. 4 we show
that the proper tool to simplify an eigenvalue problem
in a real or quaternionic Hilbert space and to explain
the degeneracies found there is the real group algebra.
How to obtain the projection and shift operators belong-
ing to this algebra from complex irreducible matrix
representations is described in Sec. 5. The necessary
proofs, all being of elementary algebraic nature, are
given in Sec. 6 and our results are summarized in Sec.
7.

2. BASIC CONCEPTS AND NOTATION
A. Fields

The fields considered here are the »eals R, the com-
plex numbers C and the quateyrnions Q {(sometimes also
called hypercomplex numbers). It is convenient to view
every field F as an extension of R. F is then the set of
elements

o-1
f:L fa, a¢ER. (2.1)

r=0
p is called the vank of F over R and the sum and the
product are defined by

fHf =3 fla,+a)),

r=0

p~1
= Zfrsor,saras s

r,8=0
where the product »s =sv is one of the numbers
0,...,p—1and o, , the r,s-element of a real matrix o.
The product s and the matrix o are specified below for
the different fields. Equation (2.2) implies that the
units f, multiply according to f, f,=/,,0, ,. If F=C or
Q we sometimes use special symbols for the elements,
especially the units f,.

F=R:pf=1; f,=1;

¢ =1; multiplication table 0@ . (2.3)
F:L:pczz; fo=1, f1=1;
general element c=a + b (a,bE]R);O .
1
ot= [1 ] . multiplication table 0 |0 1 (2.4)
1 -1 1010

F=Q:0%=4; fo=1, f =1, f,=]j, f=k;
general element g =a +ib+jc+kd (a,b,c,dER)

- O W ] N

N W]l w

. (2.5)

—

J
01
1 1 1 1 001
Q 1 -1 1 -1 1110

o= ; multiplication table
1 -1 -1 2 3
1 1 -1 -1 313 2
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R and C are commutative fields but @ is not (gg’+#q’q in
general).

For each field F a mapping from F onto F, called
conjugation, is defined by

p-1
fr= Z fror,rar .
r=0

The mapping f—f* is an antiautomorphism since (f
+fIVX=f* 4%, (ff')* =f"*f*. The modulus |f| of an
element fEF is defined by

[Fl2=fre=f*r, |f]|=0,

and the elements f with }f} =1 are called unimodular.

(2.6)

2.7

Besides the antiautomorphism f— f* we will also
meet automovrphisms f—f*. These are mappings
from F onto F such that (f+ )%=/ + %, (ff')*=ff'®,
For R there exists only the trivial automorphism f—f.
For C there is one nontrivial automorphism, namely
the conjugation f— /*. It is called an oufer automor -
phism since it is not possible to find a g& C such that
f*=gfg™. For Q the situation is quite difierent: There
exist infinitely many automorphisms and all of them are
inner automorphisms of the form f—qfg™ =ufu™, u
={q|7q. If the automorphism f— % is given the uni-
modular number « is determined up to a factor 1.
The field @ contains subsets that can be identified with
the fields C and R. Whereas R is uniquely determined
as a subfield of Q or C, @ contains an infinity of sub-
fields isomorphic to €, namely the sets {a +ub:a,bE
R ,ucQ, —it =u""}. Since this fact is irrelevant for our
purpose we shall always consider the chain RCCCQ with
C fixed (w=1). We finally note that for f}, f,, ¢ Q.

q=hHafi :fzflf;lﬁqeﬁ ,
(2.8)

In the following frequent use will be made of the fact
that the elements /& F’ can be represented by ma-
trices F¥ [f'] with elements from a subfield F' SF'.
The mapping f’ — F¥ [ '] is an isomorphism since

FYLA+m=FY 1+ F A,
FYLAaml=F A F"LA);

’ ot ‘, a1 ¥
F¥(r*]=F s, where (F"",,=(Fg) ;

q=Hqf = qEC.

F¥'[f]=0-matrixef'=0. (2.9)
Apart from the trivial representation (F=F’)
FriA=7, (2.10)
the following representations will be used (F C F'):
a+tib c+id
c®la+ib+jc+ kd]= (2.11)
—c+id a-ib
a -b -c -d
0 b a -d c .
Rla+ib+jc+kd|= , (2.12)
c d a -b
d —¢c b a

2406 J. Math. Phys., Vol. 22, No. 11, November 1981

c . [a —b]
R'[a+ib]= (2.13)

b a

Equations (2.11)-(2.13) are by no means the only pos-
sibility to represent the elements of F’ by matrices
over a subfield F. In Eq. (2.11) the basic quaternions
i, j, k are identified with io,, i0,, {o, where the ¢’s are
the Pauli matrices, but other conventions would work
equally well (e.g., —io,, —i0,, —~i0;). ForF =R, F'=Q
we shall also use the representation

a b ¢ d

0 -b a ~d c
Rlatib+jc+krd)= (2.14)

-¢c d a -b

-d -¢c b a

The representations (2.12) and (2.14) are related by a
remarkable property: If R’ is a 4 X 4 matrix then

[R',ﬁq(q)]: 0 for all quaR’:RQ(q’) for some ¢’'€Q .
(2.15)

The statement remains valid if the symbols R° and R °
are interchanged.

B. Hilbert spaces

A Hilbert space ¥y is a linear space ovey F, i.e.,
PEWy, fFEF implies nfEWy, (0 +v)f=vf+v'f. We
write the number f fo theright of the vector v; this is
a mere convention for F=R, € but essential for F =Q
since it is possible to define both left-Q-Hilbert spaces
(linear combinations fv + f’#’) and right-Q-Hilbert
spaces (linear combinations of +v’f’). For ¥ga con-
tinuous bilinear mapping ¥z X ¥~ F, the scalar pro-
duct, is defined and satisfies

(o) = (0%, (0,07 + 07 = (o, 07 + (0, 07),
(of, v’y = (e, o) . (2.16)

In the last equation care must be given to the order of
the factors if F =Q. The norm [|v]| of an element vE¥g
is the real number defined by

lolP = (v, o, fell=0.

¥gis complele with respect to the topology induced by
the norm. We also assume ¥y to be separabdle, i.e.,
there exists a countable (or finite) set {r_:n=0,1,...}
of orthogonalized elements ((r,,v,)=38,,) such that for
every €W, , v=72, v{v,,v). In the following the
term basis will always denote an orthonormalized basis
if not explicitly stated otherwise.

(2.17)

We call the Hilbert space ¥y a resiviction of the Hil-
bert space ¥, if the following conditions are satisfied:
i) F is a proper subfield of F' (FCF’); (ii) Xr isa
subset of ¥Cp’; (iii) iCr is a Hilbert space over F;

(iv) dim Kg=dimiCyr. g is a uniquely determined by
the pair F, {» }, where {r,} is a basis of X, (and as a
consequence of its definition also of the Hilbert space
¥g). If g is a restriction of ¥y the Hilbert space
iCg, is called an extension of Wg. It is obtained from
¢ by replacing the base field F by its extension F’.
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C. Operators

A mapping A from 3Cr into g is called an operator
on Kg. If A is a mapping from a subset D(A)C ¥y into
K¢ A is called an operator in g, and D(A) the domain
of A. We consider two classes of operators:

A linear = A(vf +v'f") = (Av) f + (Av")f,
A antilinear =A(vf +v'f') = (Av)f* + (Av')f'* .

(2.18)
(2.19)

An example of a linear operator is the left-multiplica-

tion by real numbers defined by
av=va foralla€ER, vE€Xg. (2.20)

Obviously aA = Aa for all operators A and the left-
multiplier 1 is the 1-operator of ¥Cg.

An operator U on ¥y is called norm -preserving if

NUv|| =1llvll for all v E3Cg (2.21)
If U is also linear (2.21) is equivalent to
(Up, T "Y=(v,v') for all v,v'E K. (2.22)

Norm-preserving linear operators are called orthogo-
nal if F=R, wunitary if F=C and kyperunitary if F =0Q.

Defining the operator A" adjoint to the operator A by
(v,Av’) =(Av,v’) for all vED(AY), v’ ED(A), (2.23)

linear norm-preserving operators may also be charac-
terized by the relation

uut=Uu'U=1. (2.24)

In 3C¢ we also consider antilinear norm-preserving
operators. Such an operator, usually denoted by the
symbol 8, is called antiunitary; it satisfies Eqs. (2.19)
and (2. 21) or, equivalently,

(8v,8v') =(v’,v) for all v,v’E¢. (2.25)

Of special interest are self -adjoint linear operators
with pure point spectrum. For such an operator H=H'
and there exists a basis {,} of 3¢ such that

Hv,=v.¢,, €, ER. (2.26)

The elements v, are called eigenvectors, the numbers
€, eigenvalues. The spectrum o(H) is the set of (dif-
ferent) eigenvalues of H. H admits a spectral decom-
position

H= 2, P, P,=P!=p?.

eco(H)

(2.27)

The degeneracy of an eigenvalue € of H is defined as
(2.28)

If € is not an eigenvalue of H we put deg(e, H)=0. To
solve the eigenvalue problem of H means to determine
o(H) and a basis of eigenvectors or the set of projectors
P, appearing in (2.27). What we are interested in is
solving the eigenvalue problem for a given self-adjoint
operator H in 3¢ exploiting the fact that there exists a
group {U} of norm-preserving operators commuting
with H. We shall show that this can be achieved by
considering an equivalent problem in a different Hil-
bert space (3Cg, # ¢ ).

deg(e, H) =dimP,iCp .

To make the last statement precise we introduce the
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concept of a densely defined operator algebra A{g).
This is a set of linear operators including the left-
multipliers a€R which satisfies the following condi-
tions: (i) A(3Cg) is a linear space over R; (ii) A(3Cg) is
closed under addition, multiplication, and adjunction;
(iii) the domain of A(3Cy), D[A(3Cg)], defined as the in-
tersection of all D(A), A€ A(Xr) contains a basis of
JCg. The last condition may be dropped if ¥ is finite-
dimensional, since then all operators A can be defined
on ¥Cg. We call two algebras A(3Cy¢) and A'(7Cg, ) iso-
morphic operator algebras if there exists a bijective
mapping [ : A(Xr)— A’(Kg ) such that for all A,B
EA(:}CF), acER

I{A +B)=I(A)+I(B), I{AB)=I(A)I(B)

IAY=1A)', Ia)=a. (2.29)

An isomorphism of operator algebras allows to solve
the eigenvalue problem of an operator H=H'EA(¥Cs) in
an indirect way according to the following scheme:
Given H, find I(H) =H’; solve the eigenvalue problem
for H’, i.e., find the spectral decomposition H' =} Ple;
the spectral decomposition of H is H=) P.¢ where P,
=I"Y(P!). If not only H but also a set {A} of symmetry
operators ([A,H]=0) is given in the beginning, the set
{A’}={I{A)} may be used to simplify the solution of the
eigenvalue problem of H’. In any case, for the method
to be effective the mapping I and its inverse I have to
be known explicitly.

We now list four cases where it is possible to con-
struct the isomorphism I. It is a common feature of
all these examples that there exists a second operator

algebra C(¥Cg) with D[C(3g)]=73CF such that
[A,C]=0 for all AEA(Kg), CEC(KCE). (2.30)

Because of (2.30) C(y ) is called the commuting alge -
bra of A(3Cg). In contrast to A(¥Cg), the algebra C(iCg)
may contain antilinear operators; it is closed under ad-
junction if the adjoint &' of the antilinear operator & is
defined via (v, 8'v") =(v', v).

Case 1:

F=C, F’=R and there exists an operator algebra
C(%cc)={a+ 6b:a,bER} with

F=1.

In this case there exists a basis {w, :m =0,1,...} of
e, w,ED[A(3C)] such that

6w, =w, (2.32)

6 antiunitary, (2.31)

and ¥y is the restriction of 3¢ defined by one of the
pairs R, {w,}.

Case 2:

F=C, F'=Q and there exists an operator algebra
C({Cc)={a+ 8b:a,bER} with

@ antiunitary, &= -1. (2.33)
In this case there exists a basis {w,, :m=0,1,+++:
r=0,1}of 3¢, u,,E D[A(K )] such that

&0m0220m11 ewnu:_wmo’ (2.34)

implying that dim3C¢ is even.
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Case 3:

F=R, F'=C, and there exists an operator algebra
C(3g) ={Fa+ F,b:a,bER} 2 with

F, linear, Fl=0¢,F,,

— qC
F,F,=0¢ F,,, o€

7,

and 7s see (2.4) . (2.35)

In this case there exists a basis {w_,:m=0,1,+-+;
7=0, 1}of 5k, w,,ED[A(3x)] such that
Frwms:UoF,swm(rs) ’ (2.36)
implying that dim ¥y is even.
Case 4:

F=R, F’'=Q, and there exists an operator algebra
C(g)={23}.,F,a,:a,ER} = @ with

F, linear, F/= o3 ,F,,

F,F,=0?,F,,, 0@, and rs see (2.5). (2.37)
In this case there exists a basis {w,,:m=0,1,+++;
r=0,1,2,3} of Ky, w,,ED[AGC)] such that

Frwma = cg,swm (rs) (2. 38)

implying that dim3Cx is a multiple of four.

D. Matrix representations

Isomorphisms between operator algebras are con-
structed via isomorphisms of matrix representations.
A matrix A with elements 4, € F is called a matrix
representation of the linear operator A in Xp if there
exists a basis {v,} C(D(A)) such that

AU =3 VA, Ay=(0,, Avy)EF. (2.39)
n
Given a matrix A and a basis {v,}, (2.39) defines a
linear operator A. If a set {A} of operators is repre-
sented by a set {4} of matrices we call {A} a matrix
representation of {A}. The adjoint operator A' is
represented by the adjoint maivix A' with the elements

(Ah),, =Ag, . (2. 40)

The terms self-adjoint, norm-preserving, etc. are also
used for matrices representing such operators.

In the first case listed in section 2C, Egs. (2.31) and
(2.32) ensure that the operators AEA(¥;) have real
matrix representatives. Hence the isomorphism {4}
={A'} can be defined as follows:

Case 1: Ay =Amy - (2.41)

In the other three cases the definition of the commuting
algebra requires the operators A€ A(¥Cg) to have ma-
trix representatives which decompose into subma-
trices of size 2x 2 (cases 2 and 3) or 4x 4 (case 4)
having a particular structure. This structure allows us
to identify submatrices with elements from F with ma-
trix elements (= numbers) from F’ thereby establishing
the isomorphism {A} ={A'}.

Case 2: A, =CYA~L,]l, C? see (2.11) . (2.42)
Case 3: A,,=RC[A!,], R® see (2.13) . (2.43)
Case 4: AmM:RQ[A,:,M], RY see (2.14) . (2.44)
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Since in all four cases

B=A'e=p' =-A" (2.45)

a self -adjoint matrix H corresponds to a self-adjoint
matrix H’ and a norm-preserving matrix U to a norm-
preserving matrix U’.

Now the isomorphism I: A(¥g)—~ A’(3Cr, ) can be de-
fined as follows: First construct a basis {w,_,} of ¥y,
transforming under C(¥Cp) in the desired way. Such
bases exist and can be constructed by means of a gen-
eralized Schmidt process. Next calculate the matrix
representation {A} of A(3C;) with respect to this basis
and apply the correspondence rule given above to ob-
tain the matrix representation {4’}. Finally use these
matrices and an arbitrary basis {w?,} of 3. to define
A’(SCF,). Proceeding in the reverse order one con-
structs a mapping I: A’(3Cy ) — A(JCg) starting from a
matrix representation {A’} with respect to an arbitrary
basis {ﬁ;} The proper correspondence rule gives the
matrix representation {4} and, augmented by an arbi-
trary basis {w,,,} of ¥, the operator algebra A(¥Cy).
The same basis {w,,,} is then used to define the com-
muting algebra C(¥Cg) by means of one of the equations
(2.32), (2.34), (2.36), (2.38) and the (anti)linearity
of the operators. [ and T are inverse mappings if, and
only if, the two bases involved in the definition of I and
T coincide.

There are infinitely many equivalent ways to define
the isomorphism I depending on the choice of the two
bases {w,,} and {w/,}. This leads to the notion of equi-
valent matrix representations. Two sets of matrices
with elements from F, say {4} and {4}, are called F -
equivalent if there exists a norm-preserving matrix U
with elements from F such that the matrices 4 and 4
are related by UAU'=A. If Uwyp =200, WnpUpy ur = Wyr
where both {w,,,} and {#,,,} are bases transforming
under C(¥g) in the right way, then U has the same
structure as the matrices A representing the operators
AEA(IC,) [see (2.42)-(2.44)]. The concept of F-equi-
valence allows one to understand the isomorphism of
matrix algebras over different fields from another point
of view,

Case 1: A is C -equivalent to a real A7 . (2.46)
Case 2: A is Q-equivalent to A’ DA’ . (2.47)
Case 3: A is C -equivalent to A'G A '*. (2.48)

Case4: A is Q-equivalent to A’®A'p A’GA’.
(2.49)

Here A’® B” denotes the direct sum of the matrices A’
and B” and A’* is the complex conjugate of A’.

Once the isomorphism [ is fixed, the problem re-
duces to solving the eigenvalue problem for a self-ad-
joint operator H’€ A(X%). This is usually done by
solving the eigenvalue equation H'v’ =v’¢. The eigen-
value ¢ is also an eigenvalue of the operator HEA(¥y)
we are actually interested in but one might ask of what
use the eigenvector v'€3Cp, will be for the original
problem. Now P! can be decomposed into a sum of
projectors P, = lv;)(v{,| where the elements {v]} form a
basis of P/¥g,. To every such projector P’'= ]v')(v'l
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there corresponds a projector P=1I"'(P’)in3f project-
ing into a subspace of P, ¥’¢. But the eigenvector v’
contains even more information. For, knowing »’, one
is able to define a basis of P¥C , i.e., a set {v,} of or-
thonormalized eigenvectors of H which belong to the
eigenvalue € and transform under the commuting alge-
bra C(¥Cg) in the same way as the basis {w,,,}.

Case 1: (w,,v')=a,={w,,ER;

gv=uv. (2.50)
Case 2: (w,,v')=¢q,€& Q;
7,5=0, 14w, v,) = C(g, IEC,
Cc? see (2.11) ,
Bvy=v,, Bv,=~1,. (2.51)
Case 3: (w,,v')=c,EC;
r,§=0,1: {w,,,v,) =RE(c,)ER,
RC see (2.13)
F,v,=7,,0¢,. (2.52)

Case 4: (w,,v")=q,€Q;
r,s=0,1,2,3: (w,,,v,)=R3(g,)ER,
R%see (2.14) ,
(2.53)

Therefore constructing a basis {v,,,} of eigenvectors of
H especially adapted to the commuting algebra C(3Cg)
amounts to find a basis {v;} of eigenvectors of H'. It is
also a direct consequence of Eqs. (2.50)—(2.53) that
the dimension of the subspace P¥yis a multiple of the
dimension of the subspace P’JC,, if only P and P’ are
corresponding projectors (not necessarily into subspa-
ces invariant under H and H’, respectively).

= Q
Frvs = Vypy Or,a -

I(P)=P’ (2.54)
Case 1: dim P¥¢=dimP’¥g; (2.55)
Case 2: dim PX.=2dim P'¥Cy; (2.56)
Case 3: dimP¥g=2dim P’¥C ; (2.57)
Case 4: dimP¥Cg=4 dim P'iCy. (2.58)

The determination of the eigenvalues of a real or
complex self-adjoint matrix (case 1 or 3) is a standard
problem if the matrix is finite-dimensional. It may be
solved numerically (yielding at the same time a basis
of eigenvectors) or by reduction to an algebraic equa-
tion.

A finite -dimensional quaternionic self-adjoint ma-
trix raises no more problems since the isomorphism
(2.42) allows to replace it by a complex matrix of dou-
ble size thereby doubling the degeneracies of all eigen-
values. It is not necessary to exploit this fact if the
minimal polynomial is used to find the eigenvalues
since this polynomial has real coefficients only even if
the matrix elements are quaternions.

We now summarize those results which are of pri-
mary interest for physical problems (cases 1 and 2)
and give some examples where they apply.
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3. EQUIVALENCE OF EIGENVALUE PROBLEMS
A. 62 = +1—real Hilbert space

(i) Let 3¢ be a complex Hilbert space and H a self-
adjoint operator in ¥¢ with a pure point spectrum o(H),
and 6 an antiunitary operator on 3¢ with ##=+1, If
[, H] =0 then there exists a real Hilbert space ¥Cr with
dim¥Cg=dim¥C. and a self-adjoint operator H' in 3y
such that the spectra of H’ and H and the degeneracies
of the common eigenvalues coincide, i.e.,

o(H)=o(H’), degle, H)=deg(e, H') . (3.1)

Moreover, if there exists a group {U} of unitary opera-
tors commuting with @ and H then there exists an iso-
morphic group {U’} of orthogonal operators commuting
with H’:

U unitary, [U,H]=0; U’ orthogonal, [U’,H]=0,
group {U} = group {U"}. (3.2)

(ii) Let H’ be a self-adjoint operator in a real Hilbert
space ¥ g and {U’} a group of orthogonal operators com-
muting with H’. Then there exists a complex Hilbert
space ¥¢ with dim¥¢=dim¥g and operators H and U
such that H=H' and U™ =U" and Egs. (3.1) and (3.2)
are valid. Moreover, it is possible to define an anti-
unitary operator  on 3¢ such that §2=+1 and [8,H]
= [9’ U] =0.

B. 92 = - 1 — quaternionic Hilbert space

(i) Let 3¢ be a complex Hilbert space, H a self-ad-
joint operator in ¥¢ with pure point spectrum ¢(H), and
¢ an antiunitary operator on ¥ with = -1. If [4,H]
=0 then there exists a quaternionic Hilbert space g
with dim¥Cq = 3dim¥C¢ and a self-adjoint operator H’ in
¥ ¢ such that the spectra and the degeneracies are re-
lated by

(3.3)

Moreover, if there exists a group {U} of unitary opera-
tors commuting with @ and H, then there exists an iso-
morphic group {U’} of hyperunitary operators commut -
ing with H”:

o(H)=0o(H’), deg(e, H)=2 deg(e,H’).

U unitary, [U,H|=0; U’ hyperunitary, [U’,H']=0,
group {U} =group {U’}. (3.4)

(i1) Let H' be a self-adjoint operator in a quaternionic
Hilbert space ¥Cg and {U’} a group of hyperunitary oper-
ators commuting with H’. Then there exists a complex
Hilbert space ¥¢ with dim3C¢=2 dim¥C¢ and operators
H and U such that Eqs. (3.3) and (3. 4) are valid.
Moreover it is possible to define an antiunitary opera-
tor 6 on ¥ suchtlmt #*= -1 and [¢,H]=[6, U]=0.

C. Examples

(i) Lattice vibvations (§%=+1). In this example one
starts with a finite real self-adjoint (=symmetric)
matrix H, the matrix of force constants, and a group of
orthogonal matrices U commuting with #. The group
{U} reflecting the symmetries of the interaction of the
lattice constituents is a finite homomorphic image of a
space group.'? These real matrices can be considered
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as representatives of operators on a real Hilbert
space JCr or on a complex Hilbert space 3. In the
second case the basis used to define the operators is
assumed to be invariant under an antiunitary operator
6 =K. Since K transforms expansion coefficients (with
respect to the invariant basis) into their complex con-
jugates K2=1 and [K,H|=[K, U]=0.

(ii) Real Hamiltonians (§°=+1). If the potential in the
time -independent Schrdinger equation is a real-valued
function the Hamiltonian H commutes with §=K (com-
plex conjugation of functions). Every real basis (e.g.,
the oscillator eigenfunctions) yields a real matrix rep-
resentation of H. JCg;is the Hilbert space of real-val-
ued square-integrable functions.

(iii) Spin-orbit interaction — even number of electrons
(@*=+1). H=2,0, %} A 1,0, where A_ is a real po-
tential, 1,, the »-component of the orb1ta1 angular mo-
mentum operator of the nth electron, and o,, the cor-
responding Pauli-spin operator. The antiunitary oper-
ator commuting with H is §=1",¢,,K. The original
Hilbert space is the tensor space ¢=Hg, 3 Hgy,. If
a real basis {¢,} is chosen for ¥y, , the action of H is
determined by a set of operators on ¥Cg, , each of the
form H,,), = i2; —/nzl Er:lonranr,m).l’ Qyrmy &SR - To see that
these operators have real matrix representatives it is
sufficient to consider the case N=2 since the electrons
can be collected into pairs. If |y, p,) is a common ei-
genvector of ¢, and 0,4, 0,5] Ky ls) = i, | K1 i;), and the
basis {|s)} of ¥y, is defined by

200 =+ - -5, Ve|n=(-[+H+[-i,
(3.5)
V22 =[+H+ -2, 2|9=(-]+- - |- D),

then @ [s) =
tation is

(63 C e - 1 int

+ E?S (iag, +jay, + kay,),

‘S} and the corresponding matrix represen-

see (2.14) .
(3.6)

RY see (2.12) , RQ

A short reflection shows that the operators ij,, =i(1l,,
+s,,) also have real matrix representatives with re-
spect to the basis {¢, |s)} so that all rotations are rep-
resented by orthogonal matrices.

(iv) Spin-orbit intevaction —odd number of electvons
(8= ~1). The situation is the same as in (iii) except
that N is now odd. If the electrons are again collected
into pairs and the same basis {¢, |s)} as in (iii) is used
for N — 1 electrons, the problem reduces to finding a
matrix representative of Hy, ys=%275.1008 mous> Or,msu's
€ R, which canbe identified with a quaternion, Thisis
provided by the representation

3
[12 a,a,],s =C%(ia, +ja,+ ka,), C? [see(2.11)]

r=l

3.7

belonging to the basis {|s) :s =0,1; 0,|s) = (~1)*]s)}.
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This basis transforms under the antiunitary operator

6 = —io,K in the way required by (2.33), i.e., ]/0) = 1),
9|1 = -|0). Both the infinitesimal generators and a
finite rotation in this spin space are of the form (2. 4);
therefore rotations of the N-electron system can also
be represented by hyperunitary matrices.

4. SIMPLIFICATION OF THE EIGENVALUE
PROBLEM AND PREDICTION OF THE
POSSIBLE DEGENERACIES

A. Complex Hilbert spaces

As has been shown in the preceeding section, the ef-
fect of a commuting antiunitary operator 4, with 82 =+1,
can be taken into account by reformulating the eigen-
value problem in a noncomplex Hilbert space. I the
unitary operators U(x) representing the group G ={x}
in 3¢ commute not only with the self-adjoint operator
H but also with # then there exists a symmetry group
{U’(x) : ¥EG} isomorphic to the original one which can
be used to simplify the eigenvalue problem of the new
self-adjoint operator H’ and to make predictions on the
degeneracies of the eigenvalues of H’. Before doing so
let us briefly recall how to proceed for a complex ei-
genvalue problem.

In the complex case it is convenient to extend the set
of operators commuting with H from the symmetry
group

G={U(x):x G} 4.1)
to a set of bounded operators
B, =GUA(, (4.2)

where A is a rvepresentation of the complex group
algebra in the complex Hilbert space ¥¢. The ele-
ments of A are related to the operators U(x) by

AEA A=M_al)U), ie.,

(v, Aw)=M_a(x){v,Ux)w) for all v,wEK . 4.3)

M, flx)= Z flx) if G is finite;

M,f(x):f dtw(t) f(£) if G is compact and continuous ,
z

= a suitable parameter space, and w a positive weight
function;

M, flx) =M, flx™") = M, flxyz) for all y,zEG;
flo)=1=2M flx) = (4.4)
aEL¥G,C), ie., ax)EC, M,|alx)|?<~. (4.5)

The number M, _f(x) in (4.4) is called the Haar integral
of f. Every BEB can be decomposed as

B=2_ E),

L 24

Gy b), C}; b)EC (4.6)

where

{x}=index set for C-equivalence classes of matrix
representations of G, subject to the convention A, =X,
x,=x_ if C1i(x) is C-equivalent to [C 2{x)]* (4.7)
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JyJ=0,...,dd -1, (4.8)
and the operators E}, satisfy
B\ =E},, Ej,E};=0,0.,E}.; [E};,H]=0.
4.9

It is just these relations which make the group algebra
interesting for the solution of the eigenvalue problem
of H. For the operators E}; are projectors which com-
mute with H and therefore define subspaces of 3 in-
variant under H,

:Z, ®ICy ,, X, =K}, ¥, (4.10)

by

and the skift opevalors E},,j+dJ, transform these sub-
spaces among each other:

B}, 302, o=}, . (4.11)
Thus, given bases {v}"} of the subspaces ¥} Lo

m=0,...,m¢ -1; me =dim¥g ;; (4.12)
it is possible to define a basis {v}™} of 32 by

=K} (4.13)

{"} is called a symmetry -adapted basis since
=2 0, (x)
1

{C* %) :xEG} = complex irreducible matrix repre-
sentation of G,

C'(x) is unitary, dim C*(x)=d2. 4.14)

The matrix representation of H with respect to a
symmetry -adapted basis decomposes into a direct sum
of submatrices arranged into sequences of identical
members

(o, HM) =6,,6,, HY,

mM — <v7un H”)M)

4.15)

It is therefore only necessary to solve the eigenvalue
problem for operators H* in complex Hilbert spaces
3’ 23}, defined by matrices H* of dimension 2}
with elements given by (4.15),

o(H)= Y o(H™), (4.18)

Since the matrix representative of H contains d} copies
of H*

deg(e,H):Z dy degle, H). (4.17)
A

B. Real Hilbert spaces

We assume the real eigenvalue problem to originate
from a complex one; the notation H’ is used for the
self-adjoint operator and U’(x) for the orthogonal oper-
ators forming the symmetry group G. Instead of B¢ we
consider the bounded operators

Br=GUA,, (4.18)

where Ay is a representation of the real group algebrva
in the veal Hilbert space 3g. The elements A'SA,
are again related to the operators UG by Eq. (4.3)
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but now with v, wEJCg and
a<L%(G,R),

The decomposition of an element B’‘EBg analogous to
(4.6) now reads

‘=2 E},F

xjJr

i.e., alx)ER, M,|a(x)|? (4.19)

lr Jo(b) Ry, Jo(b)ER (4.20)

where

{2} =index set as in (4.7) with pairs a+ replaced by

single elements i; (4.21)
G, J=0,...,d" -1, (4.22)
y,R=0,...,7* =1; #*=rank of F. (4.23)

Although not explicitly indicated by a subscript, the
field F is uniquely determined by A. According to
whether F = Ror C or Q, we distinguish three types of
representations:

R-type: F =R, »r*=1,
C-type: F =C, »*=2, (4.24)
Q-type: F=Q, »*=4.

The operators E}, appearing in (4.20) satisfy the same
relations as stated in (4.9) for the complex case (H
—~H'); the operators F* satisfy

A A A o F A A F
FeFr=0,Ferr0 o r, Fy =Fr0% .,

oF and ¥R see (2.3) to (2.5) . (4,25)

[F},Egs]=0; [FiH'[=0.

Since the operators E}, behave as in the complex case,
the operators Ej, are again projectors projecting into
subspaces of g invariant under H’,
Ha=2, ®iCk ,, ¥4, =E}ig. (4.26)
Y
The set of shift operators, however, now contains the
operators F) as well as the operators E,,;,j#J. Since
Flv is orthogonal to F* v if »# R and both elements of
3Cg have the same norm it is possible to construct

bases {v%y} of the subspaces 3¢k , such that
=Fd*, m=0,...,mk -1, (4.27)
and to extend these bases by
v} =E}vor (4.28)
to a basis {¢}7} of 3 with
dm ¥ = 2 d* r* py . (4.29)
A

Here too {2
since

At is called a symmetry -adapted basis

=T ok

{R*(x) : x£G} =real irreducible matrix representa-
tion of G,

erR )
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R(x) orthogonal, dimR*(x)=d*»* . (4.30)

The matrices R*(x) have a special structure depending
on the type of the representation x.

F-type: R}, (%) =REF,, 9] ;
RF see (2.10), (2.12), (2.13);
{F*(x): x&G) = F-valued irreducible
matrix representation of G,
F*x) norm-preserving . 4.31)

As in the complex case, the matrix representation of
H' with respect to the symmetry-adapted basis {v}7} de-
composes into a direct sum of submatrices of dimen-
sion »*my grouped into chains of d* identical matrices,

(vj7, H'vp%) = Pradis H:‘nr,MR ’

Hy, yr=(vy HW) . 4.32)

Similarly to the matrix representatives R*(x), the sub-
matrices H* show a structure characteristic of the
type of representation i.

R-type: H:'o,uo :RR[H:;(;) ]:H:;(S)E R,
C-type: H}nr,MR =R&[H, 1, H?n(ncl)e G,
Q-type: H:w,MR:ﬁ?R[HmM;f’ 1, H"me Q.

The matrix HMF) defines a self-adjoint operator H* in
a Hilbert space ¥} of dimension mj}. If the eigenvalue
problem is solved for each of the operators H* it is
solved for the operator H’ since

o(H) =y o(HY)

(4.33)

(4.34)

degle, H') =2 d*r* deg(e, B, (4.35)
A

and the eigenvectors of the operators H* can be used to

define a basis {w}yr} of %k , [cf. Eqs. (2.51) and (2.52)]

from which a symmetry adapted basis {#}7} of ¥g con-

sisting of eigenvectors of H’ is obtained by means of

Eq. (4.28).

Moreover, if H' is the restriction of an operator H in
a complex Hilbert space ¥¢ [Sec. 3B (i)] the basis
{},} is also a basis of ¥¢ and the elements w}, are ei-
genvectors of H invariant under the antiunitary opera-
tor §. The spectrum of H and the degeneracies are
given by (4.34) and (4. 35) with H' replaced by H, show-
ing that the minimal degeneracies are given by the di-
mension of the real irreducible matrix representations
instead of the complex ones [Eq. (4.17)]. The doubling
of degeneracies of some of the eigenvalues caused by
this change is usually derived by means of the anti-
unitary operator . In this approach the complex ir-
reducible representations are partitioned into three
classes and a comparison of the results, namely

R-type: d*=d}, why=mg,

C-type: d*=d} =d}", my=ml=my, (4.36)
Q-type: d*=3dg, mr=zme,

shows that the “kind” of a complex irreducible repre-

sentation is uniquely related to the “type” of a real one.

We therefore have the following equivalence of terms?:
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R-type = first kind ,

C -type = third kind, (4.37)

Q-type =second kind .

This correspondence is discussed in more detail in the
companion paper.'?

It should be pointed out that the matrices to be dia-
gonalized in our approach have the same dimension as
the matrices considered in the traditional approach if
they belong to the R- or C-type; moreover, in the first
case they are real instead of complex matrices. The
matrices H*? even have half the dimension of the
corresponding complex matrices appearing in the usual
approach.

If one does not want to calculate with quaternions,
H*? may be replaced by a complex matrix of double
size according to (2.11). This shows that the solution
of the eigenvalue problem suggested here is by no
means more difficult than the usual one. In some re-
spects the method proposed here is even superior to
the traditional one: (i) The number of real parameters
characterizing the matrices to be diagonalized reduces
by a factor 3 for the R- and @ -type representations;
(ii) the eigenvectors are real or, more precisely, 8-
invariant; and (iii) the method is free of the burden of
an unjustified and misleading interpretation (time re-
versal) if the antiunitary operator @ is introduced on
only formal grounds (lattice dynamics, Landau theory).

C. Quaternionic Hilbert space

In the preceding sections we extended the symmetry
group, here again denoted by G={U(x): xeG}, to an al-
gebra A, to obtain operators more useful for the ei-
genvalue problem of H’ than the operators U’(x). For
the commutative fields F=R or C we chose F'=F,
which was possible since the left-action of an element
fEF on an element vEXr could be defined by fv=vf.
Consequently the left-multiplicators f commuted with
every operator in ¥Cg, especially with H’, and there-
fore the linear combinations of the elements U’(x) with
coefficients from F, i.e., the elements of Agalso com-
muted with H’. This does not hold for F = Q since the
noncommutativity of @ entails in general fv+ vf; fv=2vf
for arbitrary v&€3Cq is valid only if f& . We therefore
can extend G only to Ag and have to exploit the proper-
ties of a representation of the real group algebra in a
quaternionic Hilbert space Hq.

Since the relations between the elements of A, are
the same as in the real case we are again given opera-
tors E};, and F} satisfying Eqs. (4.9) and (4.25). The
difference to the real case appears in the construction
of the syvmmetry-adapted basis for it is possible to’
find, starting from the subspaces E},¥q, a basis {tJ"}
of 1o such that the following relations are valid:

A m _ Am
E} ;0" =8,,0, 05",

F:‘U?mzé)‘[\vh‘f” freF(:Q)’ (4'38)

m:0,...,m},—l, (4.39)

dimiCy = ; d* my . (4.40)
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Which numbers f, appear on the right side of Eq. (4.38)
depends on the type of the representation x: For the R -
type it is 1; for the C-type it is 1, {; and for the Q-type
it is 1,4,j,k.

The basis {#}™} is symmetry adapted since

U’ ()m :Z Qs (x),
k)

{@*(x) :x&G}=quaternionic irreducible matrix
representation of G, *(x) hyperunitary,
dim Q*x)=d" . (4.41)

As in the case of a real or complex Hilbert space the
matrix representation of H' belonging to the symmetry-
adapted basis has a block form with chains of d* identi-
cal matrices arranged along the diagonal:

Hopy = (0™ H'vg ) .

(4.42)

Am  ppr  AMN Y
(7’; » H'vg >*5x/\5u Hoys

The elements H), are quaternions but the transforma-
tion properties of the basis elements v}"‘ under the op-
erators F! [Eq. (4.38)] and the commutativity of these
operators with H’ sometimes forces them to be complex
or even real, entailing a further simplification of the
eigenvalue problem of H':

R-type: H),=HX¥ €0,

C-type: H), =HX® ec, (4.43)
. _ g

Q-type: HY,=H)VER.

The matrices #* define operators H* in Hilbert
spaces 1} of dimension m§. A solution of the eigen-
value problem of H’ is obtained by successively solving
the eigenvalue problems of these operators.

O(H’):L){O(H"), (4.44)

deg(e, H') = 2 d*deg(e, H") . (4.45)
b

Each eigenvector of an operator H* defines d* elements

of 3¢ which are linear combinations over F of elements

o)™ (j fixed) belonging to the subspaces E},;3q and are

eigenvectors of H’. Together they constitute a symme-

try -adapted basis of 3Cq.

If H’ corresponds to an operator H in a complex Hil-
bert space ¢ [Sec. 3B (i)] then

o(H)= LXJO(H"), (4.46)

deg(e, H) =2 9_ d*deg(e, B") . (4. 47)
A

Hence the minimal degeneracies are equal to 24*,
which again agrees with the result derived with the aid
of the antiunitary operator @:

R-type: d*=d}, my=%mg,

C-type: d*=di*=dy", my=mg=my, (4.48)
Q-type: d*= édé', my =g .

A basis of 3C¢ consisting of eigenvectors of H is ob-
tained from the symmetry-adapted eigenvectors of H’
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by means of Eq. (2.50). A comparison of this method
with the traditional one gives a picture similar to the
real case with the roles of the R- and the Q-type rep-
resentations interchanged. The advantages of our
method are: (i) Only half the number of real parame-
ters is needed to characterize the matrices belonging
to representations of the R- or the Q-type; and (ii) the
eigenvectors transform in a simple way under the anti-
unitary operator 8 [see Eq. (2.34)].

5. CALCULATION OF THE OPERATORS £}, AND
F* USING COMPLEX IRREDUCIBLE MATRIX
REPRESENTATIONS

To be a true alternative to the usual method our pro-
gram must include the rules according to which the
projectors and shift operators are obtained from the
norm-preserving operators given in the beginning.
This amounts to knowing the functions appearing in the
representations (4. 3) of these operators. I is well
known'* that in the complex case

E}J :dé lwxcjll*(X) U(X) H (5. 1)

where C,,(x) is the jJ element of a complex unitary ir-
reducible matrix representation, The information
needed in this case is therefore a complete set of these
representations; this can be found in the literature for
most of the groups which are of interest for applications
in physics.

For the real group algebra a formula similar to (5.1)
exists, viz.

E},Fi=rd*M,R}, ;,(x)U'(x), (5.2)
from which the desired operators are obtained by
E), =E, F}, F},:;E’}, F,. (5.3)

The function R}, ;,(x) in (5.2) is the j», JO-element of a
real orthogonal irreducible matrix representation of
dimension »*d*; hence a complete set of this kind of
representations has to be known to apply formula (5.2).
In principle a complete set of representations R* can be
constructed ab initio, starting with the multiplication
law of the compact group G and proceeding in a manner
analogous to that in the complex case [cf. Ref. 5 Chaps.
3,4]. Here, however, we adopt the practitioner’s

point of view and give only recipes for how to get real
irreducible representations from complex ones, sup-
posing that a complete set of these representations is
already at hand.

First one hasto find out what kind each representa-
tion C* is, since this determines how one proceeds.
For complex irreducible representations of the third
kind occurring in pairs the C-type real irreducible
representation correspondong to the pair C**, C*" is
simply

R}, ;r®)=R%G[C}]®], R® see (2.13). (5.4)

More effort is needed for the two other kinds of rep-
resentations for which unitary matrices Z* exist such
that

ZMCMx)=C** (x)z* for all xE€G. (5.5)
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If. Eq. (5.5) is explicitly written down for a suf-

ficient number of group elements (the generators of G)
the matrix Z* can be determined from this set of linear
equations and the unitary condition up to a phase factor.
The two kinds of complex representations are distin-
guished by the product Z*Z**: For representations of
the first kind (R-type) Z*Z** = +E* (1-matrix) whereas
Z*Z** = _E* for representations of the second kind.*

If Z*z* = +E*,

RMx)=(Z* —-wBE)'C*x)(2* -wE"), weC, |w|=1

(5.86)

is the corresponding real irreducible representation
provided that Z* — wE* is nonsingular, i.e., w is not an
eigenvalue of Z*, This can be checked by means of the
minimal or characteristic polynomial of Z*. Any other
nonsingular matrix transforming C*(x) into a real rep-
resentation B*(x) would work equally well.

In the case of a representation of the second kind
(Q-type) we note that

C*(x) is C-equivalent to representations C*(x)
having a special structure, viz., C}, ;z(X)

=c& (2}, ®)], C?, see (2.11).

The real irriducible representation {R*(x) :xEG} cor-
responding to the complex representation {C*(x): xEG},

(5.7)

R}, ;r(®) =R%[2),x)], RYsee (2.12), (5.8)
is then simply obtained from the matrices C*(x). This

is all that has to be done if the original representation
C* already has the structure (5.7) [e.g., the 2-dimen-
sional representation of SU(2)]. In general, however,
R* (and C*) have to be determined from C* via a detour
through the quaternionic representations @*. To find
Q* one first has to determine the matrix Z* satisfying
{5.5) and

AT A o (5.9)

Then the quaternionic matrix

=B+ 2%j) =PAt = (P})? (5.10)

is a projection matrix of dimension d¢=2d"* and there
exist d* column vectors w?’; with 2d* quaternionic com-
ponents (w?,), such that

(Prwoky), = @hy),, (104, w05 :2 (100 wWos)y =545 -
n

(5.11)

If these vectors are determined by application of P} and
a Schmidt process the problem is solved since

Q)= 20 ) (CH why ), -

That the representation C* obtained from this @* is
C -equivalent to C* is proved in Sec. 6B.

(5.12)

6. PROOFS
A. Construction of bases
A large number of arguments refer to bases trans-

forming in a peculiar way under certain operators.
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The first thing we have to prove is the claimed exis-
tence of the bases adapted to the commuting algebra

Ke) [Eqs. (2.32), (2.34), (2.36), and (2.38)]. In the
definition of the algebra A(¥Cy) we supposed [A(%Cp)]
to contain a basis of 3Cg, say {v,}. Since C(¥) is de-
fined on ¥y and ACv,=CAv, for AEA(X;), CEC{CE),
the set {Cv,}also belongs to D[A@3¢g)]. If C,,. . .are
the generators of C(¥(¢) we can use the overcomplete
set {v,,C,v,,...}ED[A(CE)] to construct a basis of 1Cg
belonging to D[A(¥Cy)] and adapted to C(3Cg).

In case 1 the generating element is 8. Suppose we
have succeeded in constructing M orthonormalized
vectors w,, ..., w,_, with 8w, =w, and dropped all pairs
vy, v, linearly dependent on {w,,...,w,_} from the
overcomplete set {v", Gv"}. Let v, v be the components
of the first pair in this set orthogonal to w,...w,._,.
Then there are three possibilities: (i) v and v are
orthogonal. In this case the vectors v,=v+8v, v_
=[v -6 v]i are orthogonal and invariant under g. Nor-
malization yields two new basis elements w,, ,w,,, €
D[A@C:)]; (i) v and fv are linearly independent but
not orthogonal. If ¢c€C is defined by 0% (%, 8v) = c? the
vectors v, =ve + (fv)c*, v_=[ve - (§v)ex]i are ortho-
gonal and invariant under 8. Normalization yields two
basis elements wy,w, ,cD[A()]. (iii) » and §v are
linearly dependent, say fv=wvy,., Since @ is antiunitary
]y': 1. The vectors v,=v+6v=0v(l +y)and v_=v
- (#v)i = (1 —y)i are linearily dependent, invariant
under 6, and cannot vanish simultaneously. Normal-
ization yields a new basis element w,€D{A(3C..)].

In case 2 we proceed in quite an analogous manner,
Since §?= -1 and §v= vy implies 2 =0 we are left with
only two possibilities: (i) » and gv are orthogonal, v,
=v and v = 9v satisfy (2.34) and yield two new basis ele-
ments Wy, , Wy, ED[A(C)]. (i) v and §v are linearly
independent but not orthogonal. Defining ¢ as in case
1, the vectors v,=uvc - (8v)c*, v, =vc+ (§v)c* are or-
thogonal and of equal norm; they satisfy (2.34) and
yield after normalization two new basis elements w,,,
Wy ED[ATCL)].

Cases 3 and 4 can be treated simultaneously. Suppose
as before that we have already obtained an orthonor -
malized set g, « .+ . , Wy -1, ED[A(ICR)] transforming in
the right way under the operators F, and that all ele-
ments linearly dependent on wgg, . . » , Wy .1y, Nave been
rejected from the overcomplete set {v,0= Upyoooy Upp
=F,v,}. Furthermore, let v, be the components
of the first p-tuple orthogonal to twyg, ..., ¢, .y),- Then
v, = F,v, since the linear hull of wgy, ..., w4, 15 In-
variant under the operators F,. Moreover (v, t,)
=6, 412, 1I* because

ceey Up

FrRUO)Or,var,R = < ey ”r)

(6.1)

(v, vg) =(F 0,0, 55 Frg) =( Vo,

=(,, Fer"l)>UR,R°'R,r .

Inspection of the matrix ¢ [Eq. (2.4) or (2.5)] shows
that {v,, F,z0,) =56,z I, 1I°. It is therefore sufficient to
normalize v, to obtain new basis elements w,, ..., Wy,
€§D[ (3¢R)].

The arguments just given also apply to the construc-
tion of a symmetry adapted basis of 3cg. Since (4.25) in-
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cludes (2.35) or (2.37)
(Fyo, Fjw) = 8,,8,p(v,w) .
The properties of the operators E}; [Eq. (4.9)] imply
(E%0,E fyw)=(v, EGE },w) = 06,,8,,(v, E4gw)

:5).A5!J<E)601’:E)60w> .

(6.2)

(6.3)
It is therefore sufficient to construct bases {w?,} of the
subspaces E} ¥, satisfying w}, = Flw?, and to extend
these subbases by application of the shift operators

E}, to a basis of ¥g. Equation (6.3) holds true also

for complex or quaternionic Hilbert spaces. Since in

¥ ¢ there are no operators F except

F’S:; E}=E*

and FA =E*; they do not generate orthogonal vectors.

The only thing we still have to show is how to obtain a
basis of E},3Cq consisting of common eigenvectors of
the operators F). But this can again be achieved by a
generalized Schmidt process since

(6.4)

v=2, Fhifgop z=Fiv=1f,, (6.5)
R

and if 7 is orthogonal to v as defined in (6.5) then
{ Fq,v) =0 and hence (w,v)=0 for w obtained from w
according to (6.5).

B. The structure of matrix representatives

We first verify the structure of the matrix represen-
tation A with respect to a basis adapted to the commut-
ing algebra [Egs. (2.42)~(2.44) and the reality of A,,in
case 1], In case 1

OZ(AG—GA)ZUN:ZZUN(A,‘N -A%); (6.86)
N
in case 2
0= (A6 - 0A)wy, = Z [me(Amo,Ml -A:mo)
"
+u)ml(Aml,M1+‘4;0,M0)]; (6.7)
and in cases 3 and 4
(W ps Ay ) ={ Foavy, AFq,) =( FLF a0 Aw, )
={ W (rry s Ay ) Or g Ory - (6.8)
Equations (6.6) and 6.7) refer to a complex Hilbert
space whereas (6.8) applies to a real one. For a quat-

ernionic Hilbert space the matrix elements with respect
to a symmetry-adapted basis do not show a peculiar
structure but are instead restricted to be complex or
even real if the representation is of the C- or Q-type.
This is a straight consequence of

<1)’ Hw) = <U) FIHFer)) = < Fr‘”’ HFrw> = <Uf,, war)
=f¥v,Hu) f,,
and Eq, (2.8)

(6.9)

The second part of this section concerns the (possible)
structure of the complex irreducible representations of
the second kind®'® [cf. (5.7)]. We first note that if
Y* is defined by

Y =2z%, (6.10)
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the properties of Z*, namely (5.5), (Z*)"1=2* = _z**,
and Z),EC, imply

v =y, (Y')?=E; (6.11)
—iY= -V, (6.12)
Y*CMx)= C*x)Y* for all x€G. (6.13)

Equation (6.11) shows that Y* is self-adjoint with eigen-
values +1. The spectral decomposition is
Y* =P} P}, Pr=Li[E*+(-1yY*]. (6.14)
The degeneracy of both eigenvalues is equal since

deg(+1, Y*)=trace P} = trace(—i)P%;
=trace P} =deg(-1, 7). (6.15)

To verify (6. 15) one has to use the definitions (6. 14)
and relation (6.12) and to observe that the trace of a
self-adjoint quaternionic matrix is real.

Now since ¥* commutes with C*(x) the projection
matrices P} define two orthogonal subspaces of 1*(Q),
the space of ()-valued column vectors with scalar pro-
duct

(1),w>:21):w”.
"

Both subspaces are invariant under C*(x), If {u}}is a
basis of P}/*(Q) the elements

(6.16)

iy =wh, (6.17)
form a basis of P}/*(Q) because of (6.12). Since
C*x)i=iC*(x), both bases transform according to the

same quaternionic representation

[c*(x>w¢,]":21 [} 1,9%,&). (6.18)

The column vectors w,, may be collected into a hyper-
unitary matrix W* with elements

W;‘!.Jr =(w},), . (6.19)
We now use the relation
trace(A'B’ + B"TA"") =trace(B’A’ + A" B"") , (6.20)

which can be proved using the isomorphism (2. 24), the
commutativity of the elements of A=R%A4’] and B
=RYB’], and the self-adjointness of the quaternionic
matrices within the brackets.

XM (x) + x**(x) = trace[C*(x) + C*M(x)]
=trace W[ C*x) + CM(x)|W* =2 Z (@& + Q4T (x)]
s

=2trace CY[Q*(x)]=2trace C*(x)=2¥*x).  (6.21)

Since the character y*(x) is real as a consequence of
(5.5) this establishes the C-equivalence of C* and C*
=C% Q).

C. Equivalence of eigenvalue problems

It was stated in Sec. 2C that a self-adjoint operator H
in a Hilbert space 3¢y admits a spectral decomposition
of the form (2.27) or, stated alternatively, that the col-
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umns of a norm-preserving matrix U diagonalizing the
matrix representative H of H define eigenvectors of H
which constitute a basis of 3. These are well-known
facts for F=Ror C. We sketch here a proof for F=Q
which is typical of the equivalence of eigenvalue prob-
lems. The first step is to find a matrix representative
H' of the self-adjoint operator H’ and to replace the
quaternionic matrix H’ by the real matrix # = RYH’)
which, as is easily verified, is symmetric because of
the self-adjointness of H’, the definition of ¢* [Eqs.
(2.6)and (2.5)], and the peculiar formof E?[Eq. (2.14)].
Next suppose that v, is a normalized real column vec-
tor satisfying Hv,=v,. If we introduce the matrices

Fr:ZGBRQ(fr)

then the column vectors v,, = F,v, are (i) all eigenvec-
tors of H since (6.22) and (2. 15) imply that [H, F,]=0;
and (ii) orthonormalized since their components can be
divided into quadrupels, the correponding quadruples
having the form of the columns of R? [see (2.14)]. For
the projection matrix P'°? reproducing the four vectors
v,, we have [cf. (2.53)]

(6.22)

Pm(:' MR — Z <wmr7 Os><vos5wMR> Z Rva qo,,. Rgs(qou)

#ER o Tom) R (qou) ?R(P;M)’Pmevl

(6.23)
In the next step one looks for a normalized eigenvector
v, orthogonal to all four vectors v,,, v, gives rise to
four eigenvectors v,, = F,v, orthogonal to the vectors
v,. Continuing in this manner one obtains two things:
(i) A spectral decomposition of H that can be trans-
formed into a spectral decomposition of #’; and (ii) a
hyperunitary matrix U’ which is the image of the ortho-
gonal matrix U obtained by collecting the columns v,
¥y, ... which diagonalizes the self-adjoint quaternionic
matrix.

7. CONCLUSION

In this paper we discussed relations between eigen-
value problems in real, complex, and quaternionic Hil-
bert spaces. In all cases a compact symmetry group
was supposed to exist and it was shown how to simplify
the eigenvalue problem by means of a suitably-defined
group algebra. For complex Hilbert spaces it was as-
sumed that an antiunitary operator § with 8%=4+1 exists
which commutes with the self-adjoint operator and with
all unitary operators in the symmetry group. It was
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shown that in this case the extra degeneracies caused
by 8 can equally well be obtained by considering related
eigenvalue problems in real (2= +1) or quaternionic
(8%=~1) Hilbert spaces. This approach, dispensing
with antilinear operators, makes the underlying alge-
braic structure more transparent, especially the rela-
tion between the three kinds of matrix representations
and the three fields R, €, and Q. It leads to a reduc-
tion of the real parameters needed in the calculation
[see the remarks at the end of Secs. 4B and 4C] and is
also more natural if the original problem is given in a
noncomplex Hilbert space (lattice dynamics, Landau
theory). To be a true alternative to the usual approach
the complex irreducible matrix representations must be
given in a peculiar form, namely the representations

of the first kind in real form and those of the second
kind must be composed of 2 x 2 matrices of the form
(2.11), How to obtain these forms if they are not
originally given is described in detail in Sec. 5
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1. INTRODUCTION

In the preceding paper! (hereafter referred to as I) it
has been shown that the symmetry properties caused by
the existence of a commuting antiunitary operator 6, 6%
=21, can be taken into account equally well reformu-
lating the eigenvalue problem in a noncomplex Hilbert
space. The existence of a symmetry group is conserved
in this process, provided the unitary operators Ulx), x
€ G, all commute with . If one wants to use the new
symmetry group {U'(x):x € G} (={U{x):x € G}) to simplify
the eigenvalue problem of the new self-adjoint operator
H’ and to make predictions on the minimal degeneracies
of its eigenvalues, one has to study the representations
of G over the fields R (real numbers) and Q (quater-
nions).

Representations in real and quaternionic Hilbert
spaces have been discussed some years ago for the non-
compact Lorentz group®® and for SU(2)®. There exists
also a paper of Finkelstein® ef al. on the reducibility of
irreducible complex matrix representations of a com-
pact group if the carrier space is extended to a quater-
nionic one (see also Emchs). But I am not aware of any
published discussion of representations of compact
groups in real Hilbert spaces exceeding the rudiments
given by Frobenius and Schur® nor of detailed informa-
tion about the structure of the noncomplex group alge-
bras comparable to what is available in the complex
case.”® The present paper aims to fill this gap, Of
course there are no surprising new results since every-
thing is a direct consequence of the following three
facts: (i) The group algebra is semisimple. (ii) The
minimal two-sided ideals are finite-dimensional. (iii)
Their structure is determined by Wedderburn’s theor-
em. However the detailed and concrete discussion of
the ring bases (leading to projection and shift operators
in applications, see I) and of the corresponding matrix
representations should give more insight into the under-
lying algebraic structure, especially into the relation
of the three classes of representations to the three
fields R, C, and Q.

The paper is organized as follows: In Sec, 2 the group
algebra A is defined, its properties are discussed in
general terms and then specialized to the three cases F
=R, F=C, F=Q. In Sec. 3 the group algebras A. and
A, are viewed as extensions of Ay following the general
pattern described by van der Waerden.’ In Sec. 4 the
uniqueness of the ring bases given in Sec. 2 is discuss-
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ed. Section 5 deals with the matrix representations
over the different fields and the necessary proofs are
given in Sec, 6. Throughout this paper the notation in-
troduced in I-Sec. 2 is used and G is assumed to be a
fixed compact group.

2, GROUP ALGEBRAS

A. General properties

The group algebra A, over the field F (= RorC orQ)
is, roughly speaking, the set of linear combinations of
group elements with coefficients in F. For a precise
definition one has to introduce L*(G,F), the Hilbert
space of F-valued square-integrable functions defined
on G. In this space the scalar product is defined by

<ﬂ, b) :an*(x)b(x) ’

where x € G and M, denotes averaging over G [see I-
{4.4)]. As a consequence of the topology of G the Hilbert
space L%(G,F) is usually separable™® and its dimension
is the same for F=R, C, @, since

L¥*G,F)=FLYG,R)=L%G,R)F, i.e.,
ac L¥G,F)ea=2 fa,, a,cLG,R).
r

(2.1)

(2.2)

On L%*G,F) a group of norm-preserving linear opera-
tors, G={x}, is introduced via

(2.3)

The regular representation x —~x is an isomorphism, G
=G, and x™! =x*, Beside G a set of bounded operators a
on LZ(G, F) is introduced, each operator being in one-
to-one correspondence with a function aec L¥G,F). If
the set.{a} is denoted by A, and the convolution axb of
two elements a, b L*G, F) is defined by

XeG, vel¥G,F):xv(y)=vixl).

axb(y)=M.a(x)bx"Yy), (2.4)
the operator a is given by

acA,,veL¥G,F):av(y)=axv(y). (2.5)
Comparing (2.5) with (2.3) it is seen that

a=M,alx)x, acL*G,F). (2.8)

A is a linear space over F and, because of (2.2), also

over R (CF),
AF = FAR :AR F. (2.7)

Ay is even a Hilbert space isomorphic to L¥G,F ) if the
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scalar product is defined by

@,b)=(@,b). (2.8)

A is also a ring (closed under addition and multiplica-
tion) if the product ab is defined by the successive ac-
tion of the operators b (first) and a (second). ab =c if,
and only if, axb =c. The set Ay with this Hilbert ring
structure is called the group algebra of G over F. For
finite groups GC Ay (CAg); if G is continuous the opera-
tors x < G can be approximated {(in the weak topology) by
elements x, € A and the elements ac A by finite linear
combinations ) a(x)x, a{x)&€ F. Tohave at handa com-
pact notation we combine G and Arinto a single set of
bounded operators

B, =A,UG. (2.9)

G is closed under adjunction (x—x* =x"') and so is Ay
(and hence B;) if a* is the operator adjoint to a. The

function corresponding to a* is a*, where
a*(x) =a*(x), (2.10)

The group algebra Ay decomposes into simple consti-
tuents A} called minimal two-sided ideals. This means
that there exists a decomposition

A, :ZQ Al,

such that

ie., a=p, a" forallacA,,  (2.11)
A

A% A=2a’" =0 and @, b*) =0 for all a,bc A, ; (2.12)
BA*=AB=A} i.e.

a*c A* =bat, a'be A’;- for allbeB, . (2.13)

The decomposition (2.11) is unique but depends on which
field F has been chosen and a precise notation would be
A(F) instead of \. The same argument applies to the
element e* generating A} and playing the role of the
number 1 there,

Al=A e =eA;, e*at=ate*=a, e'=eM, (2.14)

The ideals A} are both subrings of the ring Ay closed
under addition, multiplication, and adjunction, and sub-
spaces of the Hilbert space A, invariant under the ele-
ments b e By acting as multipliers from the left or from
the right. Although intimately connected, the subring
and the subspace properties should be clearly distin-
guished, As a subring, A} is isomorphic to a full fin-
ite-dimensional matrix algebra over a field (Wedder-
burn’s structure theorem). This means that there exist
pH(=p) elements £ A}, f} =e*, such that

pr-1 -1
b ] Za f,a,:a,ER}%{Z;fra,:a,ER}: F
r= r=

=Ror C or Q; Re*=e*r CFrcC A} (2.15)
and a set of (@")® elements e}y € A}, £, K=0,...,d" -1,
such that

et =ekn s (2.16)

€hx€hixs = OxnoChis (2.17)
Every a*< A} has a unique expansion

2= elelle(@) =22 Ge@el, Ge@)eFh. (2.18)
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The elements e}, add up and multiply like matrices hav-
ing a 1 in the kK-position and zeros elsewhere, and the
elements f& Fp behave like numbersf e F, Therefore
the elements a*c A} have matrix representatives F*(a )
with elements

@ Zf,R“" Je F, RI@)eR. (2.19)
The real numbers R}Z)(a) can be determined from
o*
e,,,,a eKK _.e,,Kf,,K =€ Z R)'(r) (2.20)

Because of (2.12) and (2.13) the matrix representation
a*— F(a’) can be extended to a matrix representation b
— F*p) of B,:
FMp) =F*p"),
Equations (2.18) and (2.20) show that A} is a linear
space over R of dimension (d*)’p*. This dimension must

not be confused with the dimension of the subspace over
F; in fact if F # R these two dimensions are distinct.

b* —be* =e*bc A} . (2.21)

As a subspace A"F decomposes into isomorphic sub-
spaces invariant under the operators be B, acting from
the left (but not invariant if these operators are multi-
plied from the right!), This means that there exists a
basis {v}*:p =0,...,n* = 1;¢ =0,...,m" - 1} such that

a*cA):a —Ev"(v, ,ah) (2.22)

be By tbv) = Zv:°F;P (b), Fiplb) =@, bvi)c F. (2.23)
3

Equation (2.23) shows that A} decomposes into m* n*-

dimensional subspaces each carrying the matrix repre-

sentation b— F*(b). Since A} is a linear space of dimen-

sion m** over F and F has rank p over R
(@)p*.

The sets {e}x, f}} and {v**} can be chosen in such a way
that the following relations between F* and F* are valid:

mkn)\p = (2.24)

FOF:p =k, P=K; Fi®b)=Fb), (2.25)
FCF:p—~ky, P~KR; Fiy, ge(b) =Fix[Fax ()], (2.26)
where the matrices F are [cf. Egs. I-{2.10)—(2.14)]
FF[fl=f, (2.27)
R“'[a+ib]:(" 'b> (2.28)
b a)’
a ~b -c -=d
b a -d ¢
Q : ; _
R¥®[a+ib +jc+kd] = c d a —b (2.29)
d —c b a
a b ¢ d
R a+ib+jc+kd)= -b e -d (2.30)
-C d a =-b »
-d -¢c b a
O ir v [ a+ib c+id> )
[ [a+1,b+]c+kd]-<_c+id o ib (2.31)

The matrix represeniations 1;" and F* are both irreduc-
ible matrix representations. For F* this means that it
is impossible to find a matrix representation F* F-
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equivalent to F* such that for all be Bz F*(b) decomposes
into a direct sum of smaller matrices, say FMb)® Fj(b);
an analogous assertion holds for F*,

It should be noted that the irreducibility of a matrix
representation depends both on the set of operators to
be represented and on the field from which the matrix
elements are taken. The representation may become
reducible, i.e., equivalent to a direct sum of smaller
representations, if the set of operators is reduced or if
the field is extended. Starting from a given matrix rep-
resentation of Bg, say F*, it is possible to restrict the
operators to By, in symbols F* ¢ By, and consider all
representations which are ?-equivalent to F* ¢ By, If
the propositions (R), (C), (Q) are defined according to

(F) : F* ¥ By isQ -equivalent to a direct sum of irreduc-
ible F -valued matrix representations of B,, (2.32)

then it turns out that (Q) always holds true; in some
cases even (C) or (R) are satisfied. Observing that (R)
=(C)=>(Q) this may be used to partition the set of irre-
ducible matrix representations into three classes.

R-type: (R) is valid.

C-type: (C) is valid but (R) is not. (2.33)

Q-type: (Q) is valid but (C) and (R) are not.
Because of (2.25), (2.26), and
FF¥[f'] is Q-equivalent to f'®...®f (p'/p terms), (2.34)

F* and F* are always of the same type and the partition-
ing into three classes may be extended to the ideals A}.

B. The complex algebra A_

Group algebras over F = C are extensively discussed
in the mathematical and physical literature (see, e.g.,
Refs. 7 and 8). I assume the reader to be familiar with
this theory and quote the results only to show how they
fit into the general scheme and how they are related to
the other cases discussed below (F=R,Q). First the
properties common to all types of representations are
stated.

Ft={e’c:ceC}2F=C=F, (2.35)
d*=n*=m*, k=p=j, K=P=J, (2.36)
v = )1 2%, (2.37)
F}7(b) = F};(b) =C},;(0) = (2*) (e}, M e C . (2.38)

Since always F = C this field does not give any hint to
the type of the representation. However, to recognize
of what type a complex irreducible representation is, it
is not necessary to go back to the general definition
(2.32) since in this case C-equivalence suffices to dis-
tinguish the three types.

R-type: C*is C-equivalent to a real irreducible repre-
sentation R*.

€-type: C* and C** are C-inequivalent,

Q-type: C* and C** are C-equivalent but C-inequivalent
to a real irreducible representation. (2.39)

Because C -equivalence implies Q-equivalence the de-

2419 J. Math. Phys. Vol. 22, No. 11, November 1981

finitions (2.39) of the R- and the €C-type imply the defin-
itions (2.33) provided that these representations remain
irreducible if C-equivalence is extended to Q-equiva-
lence. This is actually the case as will be shown in
Secs, 4 and 6 (see also Ref. 4). Taking for granted that
the two definitions are equivalent for the R- and the C-
type, the definitions (2.39) and (2.33) are also equivalent
for the Q-type since it is the only remaining possibility
in both cases. In the literature the propositionsin (2.39)
are used to define what is called the kind of the complex
irreducible matrix representation; hence we have the
following equivalence of terms:

R -type =1st kind,

C -type =3rd kind, (2.40)

@ -type =2nd kind.

C. The real algebra A,

The real group algebra Ay has a slightly more com-
plicated structure than the corresponding complex al-
gebra A..

or-1

Fi={ 2, fa,:a,cR}=FDF=R, (2.41)
r=0

ptd* =n* =p*m*; k=j, K=q=J, p—jr, P—JR,
(2.42)
vl =0 el e, (2.43)
Fly, ;r0) =R}, ;z(b) =RE[F},(b)]
= () ok, el Y ER, (2.44)
Fib) = :Z_::,f',Rﬁ,, snlb)e F. (2.45)

For Ay the type of the representation is determined by
the division algebra (=field) F},
R-type: FX *F=R=F; p*=p=1;

indices ¥ =R =0 may be dropped;

Fiy0) =F};(b) =R}, (b)< R. (2.46)

C-type: Fx=F=COR=F; p*=p=2;
indices »,R =0,1;
Fl;(b) =C},(b) =RY, sob) +iR};, bl C. (2.47)
Q-type: FA =F=QO R=F; p'=p=4;
indices 7, R :0;1, 2,3;
Fy;00) =Q)s(b) =R}y, so(b) +iR} , ;4(b)
+JRYs, so(b) + kR )5, so(b) € Q. (2.48)

D. The quaternionic aigebra A,

Due to the noncommutativity of ¢ the quaternionic
group algebra Ag has the richest structure. I do not
consider the most general decoposition of the ideals A}
in this paper; instead, fixing relations between some
numbers f&Q and the ring elements e}, the following
discussion is restricted to matrix representations where
the matrices F}(b) reduce to direct sums of matrices
F°lq) ifb=eq, gcQ [or to matrices F°[g]*=C®[g]* in
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case F =C]. A special feature of these representations
i~s that for each type of representation not only the field
F is of importance but also a second subfield of Q de-
noted by F,

-1
F) *FCQ=F, {z;f,a,:a,eﬂ}zf‘QQ, pp=4;
rs

(2.49)
d*=n*=pm*; k=p—~jr, K=P—JR, q=J; (2.50)
fre?z. JR :Utl", le?("t), JR 3
J:e)}r,m :ex}r,JR(_?:Rfer) for all ;E i“; (2.51)
v} =(nM1%},, ;.. 7' see below; (2.52)
F}r,JR(b) =ﬁ)}r, wrb)e F ,
};F“?f, R0k ixf Fip= M) e}, DVEQ  (2.53)

Similar to the real algebra, the type of an ideal A’(‘) is
uniquely determined by one of the fields F or F.

R-type: Fh={e*q:qcQ}=F=Q F=R, p=1;
indices ¥ =R =r’ =0 may be dropped;
F};0) =F}:(0) =2);(b) = ) e}z, bM € Q;
2,(eq) =8,,Q%(q] =64 .

C-type: Fi=1{e'a+ib:a,becR}2F=C =

(2.54)

F={a-jb:a,beR,jcQ}, p=2;

indices ,R =0,1; v’ =0 or 1 is the number appear-
ing in the decomposition

1T e
el ir =€, JojR; i}y, sr =€}y, ri(=1)"%;
F}r, sr(b) =1::}r, =) =€}, rblec,
e?r, s i + e}, 710)71 = (m*)™! (e)}r, I €Q;
€}, srleq) =06,,Cklq] or 6;,Cl[q]*. (2.55)
Q-type: Fjy={e*a:acR}2F=R, F-Q p=4;
indices v,R =0,1,2,3; »'=0;
fr€} 5,0k =0 €5 rs), 575
F}r, sz(b) :ﬁ}r, srib) = (R},' rD)ER,
®Yr, 20(0) = i®),, 51(b) = j R}y, 12(0) = kR, 73(b)
= ™) e}y, 70,01 € Q;

Ry, sz (e9) = 5;/Rz(a]. (2.56)

3. A, AND Ay AS EXTENSIONS OF Ax

It is instructive to view the complex and quaternionic
group algebras as extensions of the real one, An exten-
sion Ag— Ag,, FC F’, implies two things: (i) The Hil-
bert space Ag [or L%G,F)] is extended to the Hilbert
space Ag,[or L*(G, F')]; and (ii) the set of left multi-
pliers (=operators) {ef =} ,e*f: e*c A}, fEF} = Fis
extendedto the set{ef' =3 e*f' :e*c A}, f'¢ F'} =F

1f one starts with the operators be B; and considers
the chain L*(G,R) - L*(G,C) - L*(G,Q) one obtains the
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following scheme:

R-type: R} - —-Q*
mromt =mtomt =m*.m*
R*a.i, C~R? Q@ ~R* (3.1)
C~type: R* —-Cc*act -~ Qo
2mrom* =mromt +mrom* = mr o o
C™a.i. Q}~CcM~cr
CMACr =(CM)* (3.2)
Q-~type: R* - C*aC ~-Q*@Q*0Q e *
4mt . m? = 2m om* + 2m* om?
=mrm* + o +mrom + o
Q*a.i. (3.3)

In (3.1)-(3.3) the product listed under a representation
F* is n*,m*, where n* =dimF" and m* is the number of
subspaces of L¥(G,F) transforming according to F*; m*
is also the dimension of the matrix algebra isomorphic
to the real two-sided ideal. The symbol a.i. stands for
absolutely irreducible, meaning that F* remains irre-
ducible even if F-equivalence is extended to F’-equiva-
lence (FC F'), As is seen from the scheme, m* is also
the dimension of the a.i. representation contained in the
representation F*. The equivalence symbol ~ under F*
denotes F-equivalence and the first [second] arrow may
be replaced by ” isC -[Q-] equivalent to . The result
that complex irreducible group representations of type
R{=1st kind) or C(=3rd kind) remain irreducible where-
as representations of type- Q(==2nd kind) split into two
equivalent quaternionic group representations has al-
ready been obtained by Finkelstein? et al. It is based on
the fact that every decomposition appearing in (3.2) and
(3.3) may be achieved by solving the eigenvalue problem
of a self-adjoint element of the group algebra not exist-
ing before the extension. In the first step this element
must be +i* (C-type); in the second it can be chosen to
be j*j {@-type) [see Sec. 6A].

For the R- and the C-type the decomposition of the
matrix representation of By is obtained choosing the
elements v}y given by (2.53), (2.54), and (2.55) as basis
of the subspaces A} [or the corresponding functions vl
e LG, Q) as basis of LMG,Q) =e*LYG,Q), e*c Az]. To
obtain also the Q-type representations in the completely
reduced form (3.3) one has to pass from the basis {v};
defined by Egs. (2.53) and (2.56) to a basis {w}/} accord-
ing to

1 —i -5 -k
S
Wi=2Wes, @=a/2|l 57 3.4)
, -
Eojo—i 1

This shows that it is possible to find a basis {w}'} of the
quaternionic Hilbert space L%G,Q) such that the eigen-
value equations

ey Wi =w¥ for ef,c A), Pwl =w¥f for PcFy, (3.5
are satisfiedfor alltypes of representations [cf. I- (4.38_)]1
The type of the representation shows up in the field {f}

=F C Qgenerated by the eigenvalues of the operators f*,

P. Kasperkovitz 2420



The next step is to keep the Hilbert space L%G,F) or
the subspace LMG,F)=e*L%G,F), e*c Ay, fixed and ta
extendthe set of left-multipliers {Y¢’@ :a € R} =R tothe
set {3} e"ffeF} = F. For F = C this does not change the
structure of the decompositionintoirreducible subspaces
since in this case the Hilbert space is complex and

beBy. (3.6)

Passing from C to Q by introducing the left-multiplier
7, the situation becomes different because for a given v
€ L¥G, Q) the elements v and jv may be linearly inde-
pendent. This happens for the C - and the Q-type where
a pair of complex irreducible representations of B¢ is
absorbed into a single irreducible representation of By.
Therefore the full extension including both the extension
of the Hilbert space, L(G,R)— L(G,C)— L(G,Q), and
that of the operator set, {Bz}—{Bg, i}~ {Bx,,7}, is giv-
en by the following scheme:

cb=bc forallce(C,

R-type: R* - C* -~

m*om* =m*.m* =m*m* (3.7
C-type: R? —~CM*act —~*~e?

2mtomt =t o +mPom*  =2mPm (3.8)
Q-type: R* -~ Cac? -~y

4 om® = 2mrom? + 2mrom =dm om*. (3.9

The factors refer to the decomposition of the spaces
L*G,F). The symbol ~ denotes Q-equivalence and the
guaternionic, complex, and real representations listed
at the end of the chains are just the representations giv-
en in Sec. 2.

4. UNIQUENESS

One may ask to what extent the properties (2.16) and
(2.17), supplemented by (2.35)~(2.38) for F =C, by
(2.41)~(2.45) for F = R, and by (2.49)-(2.53) for F =Q,
fix the ring bases {e,,f}} and the Hilbert space bases
{v}¥}. To see this, suppose two ring bases {'e}s, ‘1’f}},
{Pel,, P12} satisfying the same set of equations to be
given, It is then possible to find a pair £’, 2" such that
@l » el 0 and to use these indices to define a
norm-preserving element u*e A},

A 2) 2 () A
u = bhlk” Z ¢ )ekk”( )eklk, bh’h" €R 3 uhu\0 -:ul’u) = eA .
k

(4.1)

For this v

“M 2 )ezxu

»_d )e:m u* (Z)F,,’:u" -« )F} , ™ e*Fu* = e*F.

4.2)

In general the elements v ‘¥fu*, u™f,u* will differ from
the elements ‘'f}, ¥, but are equally suited as basis ele-
ments for the fields '’F}, F since they satisfy the same
relations. To be more precise,

o Z(z)ﬁar R me:ar =Z(a'““ﬂ)a,, (4.3)
r r r

where a™!: VF} — MF} is anautomorphism of this field,
and

F#Q:u™At =f for all fe F; (4.4)
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F=Q:u"fu =f for all fe F,

WAt =& F for all fe F, (4.5)

where & is an automorphism of F. Therefore, if a third
ring basis {®’e}y, ®’}} is defined by

(&} )e:K =uh(2)e=Ku1’ (&} )f: =uM [¢] )frxux , (4.6)
the uniqueness of the matrix representations can be dis-
cussed in two steps, namely first (2)— (3) according to
(4.4)-(4.6) and then (3)— (1) according to

(1) a (3) 2 (497 (3)er
&r = Sy, fr=a"f}, (4.7)

In the first step relations (4.6} immediately yield
mf)‘(b) = ‘3)1':"(u7‘*bu‘) = [j» mf"(b)L-f", = “”F"‘(u") , (4.8)

showing that the matrix representation F* is determined
only up to F-equivalence. The corresponding result for
the matrix representation F*,

@ )Fx (b) - [ )Fl(u)&buk) — Ul*(S)Fl(b)Ul ,
F2F: FP\b) =F'b), U=0",

FCT: Fib) =FF [ ®)], U*=FF[}], (4.9)

is obtained if the Hilbert space bases {?'v}?}, {®'v}?}are
related to the ring bases {Pely, P8}, {®ely, ¢'f}} as it
is required in (2.37), (2.43), or (2.52). It should be
noted that for F= (@ the automorphism & appearing in
(4.5) is the identical one for R~ and Q-type representa-
tions; for the C-type representations where @c =c or
e =c* this automorphism is always compensated by the
way the bases {®V}*}, {¥V}F} are chosen [cf. Eq. (2.55)].

To see what happens to the representations in the sec-
ond step it is necessary to introduce an automorphism
&: F— F corresponding tothe automorphisma : F} —~ F},

a(3)f7 — Z (3)fsotr _a )fr ,
8

o 29%a,=) @)a, =Y V40,0, (4.10)

& frar =2 @f)ar = 210,

The special form of the orthogonal matrix O appearing
in (4.10) depends on the field F. The relation between
the matrix representations ’#, ®F* anq WF*, O i
then

FOF: OF\(b)= CFP®)=a' P b) = aV’F\b), (4.11)
F=R: %R}, ,;z(b) =§§‘, 0,y VRY,, 75 0)0%
8.
=RE[VF), (b)] =RE:[aVF) ,(b)] . (4.12)

For F #C all automorphisms of F can appear in this
kind of equivalence of matrix representations. For F
=C, however, only the identical one is admitted and
two matrix representations belonging to different ring
bases are always linked by a unitary transformation (G-
equivalence).
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5. MATRIX ELEMENTS AS FUNCTIONS ON THE
GROUP

A. Complex representations

In the complex group algebra A. the elements e’; s are
related to the irreducible matrix representations C*(x)
=C "(x) by

€ =n*"M,C%(x)x, n* =dimC*x). (5.1)

Accordingly the properties of the ring bases {e’},} [Egs.
(2.12), (2.16), (2.17), (2.37), and (2.38)] are reflected
in an equivalent set of equations for the functions C’},:G
—~¢C. This setis

Csxy) =;c>,.(x)c),,(y> (5.2)
Cisx™) = CYw), (5.3)
Ci*Cl 7o = B85, Chpnd™) (5.4)
ac Lz(G,C)=aa=§ CHCm*,a) . (5.5)
Equations (5.2) and (5.3) show that {C*x):xe G}is a

unitary matrix representation of G. The convolution
formula (5.4) implies the orthogonality of the C’s which,
combined with their completeness, gives the expansion
formula (5.5). Equivalent sets {e},} and {&},} corre-
spond to equivalent matrix representations C* and C*
related by

Cx) =UMCMx)U*, U* unitary . (5.6)
B. Real representations
For the real group algebra A, one finds
el B ="M R}, ;olx)x, n*=7r'd*=dimR*(x). (5.7

The functions corresponding to the elements e}, and £:
are obtained from (5.7) according to
e}, =¢e} et =€) £}, f}:e"t’,‘:Ze},f&. {5.8)
7
Hence the properties of the ring basis {e},, f:} are de-

termined by the real irreducible matrix representation
R* and vice versa. The elements of R satisfy

R, ir(x) =0%  R)r), ro®) (5.9)

By, 2000) = 20 B gy R, a3 (5.10)
er. R ):RJR,jr(x)! (5.11)
Ry, s¥Bore, 109 = Bas (SJI'UE,WR)(W' NI (5.12)
ac LXG,R)ma= 2o Ry, 1o®)y, st a). (5.13)

ATY
Equation (5.9) shows the real irreducible matrix repre-

sentations of the group to have a structure which is typ-
ical for the type of the representation [cf. Eq. (2.44)].
Equations (5.10) and (5.11) state that {R*x):x< G} is an
orthogonal matrix representation of G. As in the com-
plex case, the convolution formula (5.12) implies the
orthogonality of the functions R’}.,,,o, whereas the essen-
tial content of (5.13) is the completeness of these func-
tions in L*(G,R). Equivalent matrix representations
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corresponding to equivalent ring bases are related by

R*x) =$™U™RM(x)U*S*; U? orthogonal,

A - .
Ujr, 0 =077, Usirr, 703

R- and Q-type: S§* =E1-matrix), (5.14)

C-type: S*=E* or 8}, ;r = 5;;8(-1) .

C. Quaternionic representations

Due to the conventions made in Eqs. (2.51) for the ele-
ments e, yr of the quaternionic group algebra Ag the
formula corresponding to (5.1) and (5.7) in the complex
and in the real case, respectively, now reads

€lr, s ="M fr £, (x)f 5X, M =dimf*(x) (5.15)

The numbersf, are specified in (2.54)-(2.56) and the
functions
-1
f},(;:):rzo_f,g,,,,o(x)e F (=F}) (5.186)
coincide with the matrix elements F},(x) defined for Ag
(cf. Eq. (2.45)]. They satisfy

fir(xy) Z fin()er(y), (5.17)
f;.r(x- ) :f.rj(x) ) (5.18)
f;‘l*f}:.r' =8y Ougufiss m™)t (5.19)
ac L}G,Q)= a= 2 f, 3 F flym?, a). (5.20)

pEF LS

Equivalent matrix representations corresponding to
equivalent ring bases are related by

M) =UMoMx)]U,
R- and Q-type:

2% 3 0y _—
U" norm-preserving, Uj;eF;

wf=f, C-type: wc=c or c*,

(5.21)

6. PROOFS

A. Construction of bases

In this subsection proofs of the assertions made in
Secs. 2 and 3 on the noncomplex representations are
given or at least outlined. Complex representation the-
ory is supposed to be known™® and proofs being quite
similar for all three fields are mostly omitted. More-~
over, quaternionic representation theory is considered
as an extension of the real one as was done in Sec. 3.

The first thing to be noted for the real group algebra
is that Ay is semisimple. This is a straight conse-
quence of the fact that A, is a Hilbert ring.'’ The es-
sential feature of the minimal two-sided ideals A% is
that they are simple (i.e., do not contain proper two-
sided ideals) and finite-dimensional. The latter follows
from the fact that the function #»*x* corresponding to
the elements e* generating the ideals A} are continu-
ous.!! With the simplicity and the finiteness of A}guar-
anteed, Wedderburn’s famous structure theorem' ap-
plies: A} is isomorphic to a full matrix algebra over a
division algebra (=field or skewfield) F. The field
must be an extension field of R since Ak contains the
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subset e* Risomorphic to R. But there are only three
extensions of R, namelyR, ¢, and Q‘.“’ These three
fields allow a natural partitioning of the two-sided ideals
into three classes (“types”). For a given group all
three types may occur, as the example of the double-
point group Df shows. Since A} is isomorphic to a full
matrix algebra over F, the representation F* associated
with this isomorphism [Eqgs. (2.18) and (2.19)] is irre-
ducible,

It remains to discuss the Hilbert space properties of
A}. That the subspaces Aye%, are invariant under the
left-action of A, follows from AyAk =A} [see Eq.
(2.12)]. To prove that the elements e},f:c Ake’, are
orthogonal and have the same norm one first puts » =0
and repeats the proof of the complex theory [Hint: use
(2.16) and (2.17), and {a,b) ={a*,b*)]; then the factors f
satisfying

g =f¢°§‘,n 1% =£¢R0?,R

are introduced as operators acting on the elements e},.
The common normalization constant »* =dimR* is ob-
tained from Eq. (5.7) relating e},f} to the functionR},, ,.
The proof of (5.7) is given in subsection 6C below. The
peculiar structure of the matrix representations R*car-
ried by the basis e},f} is a direct consequence of (2.17)
and (6.1). The representations R* are irreducible over
R: For a decomposition into a direct sum of smaller
matrices would imply a decomposition of Fj into a di-
rect sum of division algebras isomorphic to Fk; but this
is only possible if R is extended. The calculation of the
matrix elements R},, ;z(b) by means of the scalar pro-
duct (2.44) follows from

nXR }r, JR (b) = <e}jlf:’ b)‘e)}j'f}%> = (e}‘,’,f:’, f;;e?jlbh>

ok kA M\ e AT e b
=(e%. e} 021, b") = (e} ,f}rfh ok RIX, D).

(6.1)

(6.2)

That the representation F* can be obtained from the
representation R according to (2.45) follows from

b= Zeﬁ,f},(b) =Y e} £ 0) el L2, b (6.3)
i iJr -
[cf. Eqs. (2.18) and (6.2)] and the isomorphism Fj = F,
Having clarified the structure of Ay, the complex al-

gebra A, can b e obtained by extending both the left-
multipliers (=operators) and the right-multipliers (=
elements of the base field of the vector space) from R to
¢. Since ¢ is commutative,

A, =CA,C=AC. (6.4)

The adjunction of f; =i can generate a new self-adjoint
element. Its spectral decomposition, if not trivial,
yields a new decomposition of the element e* (eéAk) into
primitive idempotents. For the C-type the new self-ad-
joint element is proportional to f}i. The idempotents g,
obtained from its spectral decomposition satisfy

g, =(1/2)e +1(-1Vil=g}, ghghr =58,
Zg:r :e)') f?grr =g¢r(—1)"1i . (6-5)
r

The g’s commute with all elements of A}, as does 73,

and split this two-sided ideal of Ay into a pair of mini-
mal two-sided ideals of A;, say A¥. If A} is of Q-type
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there is an infinity of new self-adjoint elements, name-
ly the elements u*i for which u** =—u*=(u*)"'. Since
they do not commute, only one of them, say f){i, can be
used to decompose each e}, € Ak into two idempotents
e},, j» which are primitive in Al. The multiplication law
(6.1) then implies

fgh =hls;
therefore the two-sided ideal Ak does not give rise to
two new ideals but only changes its internal structure:
The dimension of the matrix algebra isomorphic to Al
=A} Cis now twice the dimension of the matrix algebra
isomorphic to A} and the field of matrix elements is
now € instead of @, since the subalgebra of F} isomor-
phic to C has been “diagonalized.” The adjunction of 4
does not give new self-adjoint elements if A} is of R~
type. The only change in the structure of this ideal is
that F4 ~R becomes FAC =F¢ =C

(6.8)

The complex representations of By =Agp UG carried by
the elements of At are easily computed from the real
representations R* and Eqs. (6.5) and (6.6). The repre-
sentations of the R-type remain real if the ring basis is
not changed. For the representations of C-type the
splitting of the two-sided ideal entails a splitting of the
real representation R* into the pair C* of conjugate
complex matrix representations [see (3.2)]. Since €, f}
and g}, g}, are related by nonsingular complex trans-
formations, R* is C -equivalent to C* @ C*", If the ele-
ments ghyels , —fighe}s, J fixed, are used as the basis of
an ideal of Q-type, the real representation R* is trans-
formed into C*®C*, the complex representation C* be-
ing composed of submatrices of the form c? [see (2.31)].

The extension of A; to

Ag=QAcQ 6.7)

is accomplished by the adjunction of f, =j both as a left-
multiplier (=operator) and as a right-multiplier (=co-
efficient in a linear combination). For the R-type the
ring basis e',‘, already obtained for the ideal A% can be
used also for A’é. Since the functions corresponding to
these elements are then R-valued,

gei;=elsq forallge@. (6.8)

Conversely, if (6.8) holds [as is required by convention
{2.51)] the functions corresponding to the elements e};
must be R-valued and the e’s form also a basis of the
R-type ideal Ak, Obviously, Aa is then isomorphic to a
matrix algebra over Q. the dimension being the same as
in the real case. For C-type ideals the situation is
slightly more complicated. The relation

fo&h=glif2, (6.9)

meeting one of the conditions required in (2.51), shows
that pairs of conjugate ideals, say A¥ and A}, are link-
ed by f,, resulting in one ideal AY =QARQ=A%LQ. The
division algebra
FroaFr=e¥codeC=e'C (8.10)
remains isomorphic to ¢, but the dimension of the ma-
trix algebra is doubled. For ideals of Q-type the ad-
junction of f, yields new self-adjoint elements such as
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f’z“fz. Proceeding as for f}f,, the idempotents
h}, =(1/2)[e* +£57,(-1)] (6.11)

appearing in the spectral decomposition of f3f, can be
used to define a ring basis of A§. The elements
e}r, JR =fre}fgsoh30f; » (6.12)

where e}, is one of the basis elements of A} satisfy both

Egs. (2.16) and (2.17) and the convention (2.51), More-
over, using the decomposition
be* =b*= ) e}, iR}, ,,(b), (6.13)
igr

the definition (6.12), Eq. (6.1) and the corresponding
multiplication law for the numbers f, €Q, and Eq. (5.9),
one obtains

&)y, 7rbe5r, s =€}y, ;r RYy, 72 (). {6.14)

Equations (6.12) and (6.14) show A’é to be isomorphic to
a full matrix algebra over R, the dimension being four
times the dimension of the matrix algebra isomorphic to
Ak.

The elements e}, sz forming = ring basis of a two-
sided ideal A} are linearly dependent in the index R
since (2.51) implies

e, sr = f+€}0, 507 5 - (6.15)

Treating the left-multlphersf as norm-preserving
operators satisfying ft =£,0f , and 7,7 r =f,z0f 5, the
orthogonality of the elements (6.15) in 7 is easily es-
tablished. Orthogonality in j is proved as for Ay or A..
To prove orthogonality in J it has to be noted that Eq.
(2.51) implies e}, Ak if e}, is defined by

b x .
€j7 :Z €ir,Jr;
T

this result is independent of the special definition (6.12),
Therefore

(6.16)

<e}0, 70 e;O. 1) = (e’};, e?o, sy = <e).‘/'0. 109 e).‘r/>

:<e§r,0,j0,€;_\]0,10>:0 for J+J’ , (6.17)
the second equality being true only because of e?JGAR
[for a,be A, (a,b)# (®*,2") in general]. Analogous to the
real and to the complex case, the common norm m* of
the elements e,,,,,-R follows from the representation
(5.15).

The matrix representation of Ay carr1ed by the basis
{e},, srs 1 XJ¥’ fixed} and denoted by F* is determined in
several steps: First the division algebra Fo is deter-
mined. The result, listed in (2,54)-(2.56), follows
either from convention {2.51) [R-type] or from the fact
that Fy is the center of A [T~ and Q-type]. Next#’ is
chosen such that

£}, sre =€, srof ¥ =€}r,srefy for all fie F*.  (6.18)
This is always poss1ble since f* +fs is self-adjoint, e_,,, Jre
primitive, and £} F§ and [due to (2.51)] f, € F both
commute with €%,, ;... Equation (6.18) entails F*=F"
since every f& Fy is a real linear combination of the
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elements fyc Fy. Finally

= !};R €, srllr, rr(0) = E e, srE R R (b)

jrJRs

X o) 7x _F 1)
= Z fsejr. Jr'frlROro.rlR Rjr, JR(b)
jrJRs

(s)
2 ejr. Jre thRjr, sr(

i =Y I
E €, sreFhr, sr O AROF. 1ir
rJR

II

fr'RUr' r*R

I

(6.19)

from which (2.53) is obtained by taking the scalar pro-
duct with €}, ;,,. The matrix representations F *(e’y),
g€ Q, can be computed directly from (2.51), the results
are listed in (2,54)-(2.56).

B. Uniqueness

To make the discussion in Sec, 4 complete, the defin-
ition and the properties of the element u* have to be de-
scribed in more detail. First it is to be noted that

e _me Zm »

because the element €e* is uniquely determined by its

properties Equation (6.20) implies that for a given
Wek . =e* e, ., (#0) there must be an element *’e}.,.

u )e?,.,,* 0. Since ‘Ve}, is primitive

(6.20)

($9 }\ “Z) A 1) 2 (I)fk
R R

Y h
€hvne ek e 1

€hopr

:ahlk" )eh‘h'v ah'k'e R, (6.21)

the last equality following from the fact that both the lhs
and )ek,,,, are self-adjoint and hence ‘"’f},,. = )5,
=04y €. Exchange of e}, and ®e}.,. vields a real
number ay.,,. But di., :az,k,, since

( A A A (1) ) x
“ )e:: 2)6,,..,, “ )eklhl )eknk. =Apepn )eklkl @ )ek.k.
T L (6.22)
Next observe that
( X ) ) by @)
[ Z)e L eﬁ ][(1 )eﬁ @ eznw] LT (6.23)

is positive definite. Hence a}.,. > 0 and it is possible to
define a positive number b},,. by

Bh i = (@) /P 0L (6.24)

The first of Eqs. (4.2) then follows directly from (4.1),
(6.21), and (6.24). The second is verified by recogniz-
ing that u*“©Fpu* is a field commuting with all elements
el - hence it must be equal to ‘’F}. The last of Egs.
(4.2) is trivially satisfied for the commutative fields F
=Ror €. For F=Q conventions (2.51) holding both for
“ ’eﬁ,, /& and Vel ;z and definition (4.1) imply u™Qu*
=¢ Q since

W, =F 0, W = (B afforre U = (GOW (6.25)
where j'7'(=k’) and j"»” {(=k") are the fixed indices ap-
pearing in the definition of u*,

Equation (4.8) relating WA o BF* is obtained from
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(4.6), (2.18)=(2.20), and
x » Dgd A [u O] DR
Wbt = 2 [u [ @8] PR (b)
1744
_ Z @®ed, Gpr SR Mou?) , (6.26)
RKr

To verify Eq. (4.9) for F =R one uses (2.25) and (2.26),
and

) (2)eA(2)
bm A (z)fx _Z 2 x" Jin (2 Rjr,JR(b)

Y
:u)\[uhbuk]( 3 )e}j' 3 )f}gu +

_ Z (2)e}” @p @ )R}r, 72 (0buY). (6.27)
Fid

The proofs for F = C or  are quite similar.

For F = h the second part of the equivalence relation,

e., step (3)—~ (1), follows from (2.19), (4.7), and
(4.10),
3rgh b(s) (3)67;.’2 (3)f;‘(3)R)}r,.m(b)——(“ A b“’ ",
r

(1 (ex (1)pA
= e’}, Z 1, !Ru. so(0)
E 3

=@, 3 @po, WRY, ,, b), (6.28)
rs
implying [cf. Egs. (4.10)]
B () =a VF,b), (6.29)
and the relation
b e}, © ) :Z (3)631' (D )R}r sz (b)
Fid
=b Ve, Z Wp ot
s
= Z (3)3311 (a)f:OuR}:,JS(b)OTSR . (6.30)
jrssS
That Eqs. (6.29) and (6.30) fit together, i.e., that
@R%,, 7 (D) :; Or¢ 1R}, 75 0)0%R =R7z[“'F;;(0)]
&
=R¥,[d VF,,(b)]. (6.31)

can be verified using the peculiar form of the matrices
o,

R-type: O=1,

come 021 2)
~-iype: = 0 +1 )

Q-type: O=RUqu*Rqu*] =R u*]R[u*], uu*=1.

(6.32)
The corresponding proof for F = C is redundant since in
this case (4.3), u'c =cu*, and F =e*¢, imply &(ce*)
=ce*, For F =Q, Eq. (4.9) follows from (4.7) and, for
the R-type, from

3) 3) A -1 (1) = =1(1) by
fo="7 " =0 fc:[a fs]e

= Zt « rI_ier[u]‘R?:[u]e)t = Z o 'rR?t[u]Rth[u]e)‘
r r

=[u® u¥]e?

, (6.33)
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A 3), Gpa g (A
Gelp Ve, = (3)6112 + Ry, ro(b) ="eyb ey,
r

= a )e;JZ “ )fl “ )R}C. JO(b) ) (6'34)
&

@92 (b Zfr R, solb) = Zer.g[u]R (]R3, 10(b)

—Zer [u*]RQ

rst

RS, sofb) = 3 @) R}, 10(b)

o (6.35)

The simple proof for the C -type is left to the reader.
For the Q-type & is the identical mapping and the step
(3)— (1) is trivial,

C. Matrix elements

In this subsection the relation between the elements of
the ring bases and the corresponding matrix represen-
tations is established for F=Rand F=Q. Let E,; ,

e L%(G, R) be the function corresponding to €}, € A,
i.e.,

el =M E};,(x)x. (6.36)
The transformation properties under y*, y € G, are
then given by

y"e}j.fﬁ :jZ e?,nf:R?r, JR(y-l) ’

r
EYp, z(yx) = ZE!}’ PR}, e (v ). (6.37)

{R*(%) 19 € G} has to be an orthogonal matrix represen-
tation [cf. Eqs. (5.10) and (5.11)] since G=G and y is a
norm-preserving operator on L%G,R). Putting x =¢ one

has
B pror(¥) = 25 Ebyo, (€)RY 2, () . (6.38)
ir
Observing that a*b is a continuous function,'* that
@,b) =a*ble), (6.39)

[cf. Egs. (2.1), (2.4), and (2.10)], and that Egs. (6,36),
(2.15), and (2.17) imply E};,o*E%j.,, =E}p,,, the num-
bers E};, .(e) can be related to a scalar product,

E}ji.r(e) :E?J, O*Et‘li'.r(e) = <e):flf7l;’ e):f.i'f::) :N)‘GH'GYO .

The normalization constant N* is determined from

(6.40)

= Zj: (&8, e st) = jZM,N‘R}r. so@INRY,, 1o(x)
r r

= (N1, 2 Rl ™ IRy, o) (6.41)
r
to be equal to n* =dimR™x). This completes the proof
of (5.7). Equations (5.13) and (5.14) are only trans-
scriptions of the corresponding properties of the ele-
ments e},;ff. The equivalence relation (5.14) has al-
ready been derived in subsection 6B [see Egs. (6.27),
(6.31), and (6.32)].

Equation (5.15) relating the quaternionic ring elements
to matrix representations {f*(x):x< G} and Egs. {5.17)~
(5.20) are easily verified using Egs. (5.1)-(5.13), if the
elements e?,, IR EAO are defined according to the follow-
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ing conventions:

R-type: e}y, so=€},;

C-type: e?r, JR =]"83093.r(—j)ﬂ, gh see (6.5);

Q-type: €}, sz =f,E0h5o€}s Fr, g5 see (6.5);
h}, see (6.11) ;

all types: {e},} =basis of Ak. (6.42)

This proof of Egs. {(5.15)~(5.20) for a special choice of
elements e},. sr and representations f* can be extended
to all equivalent sets using the equivalence relation
(5.21) which has already been proved in subsection 6B
using a different notation [Eqs. (6.26)~(6.29), F*— ]
Note added in proof : After completion of this paper I
came across the paper “Quaternionic representations
of compact metric groups” by S. Natarajan and K, Vis-
wanath [J. Math. Phys. 8, 582 (1967)]. These authors
derive orthogonality and completeness relations for
matrix elements and characters of irreducible quater-
nionic representations and they point out the relation
of the type of these representations to the fields R, G,

Q.
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Analytic evaluation of certain zeroth order coulombic

hyperangular interaction integrals®
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Kadikoy-Istanbul, Turkey
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As has been presented in a previous paper, the use of hyperspherical coordinates in research on a system of
electrically charged particles carries mathematical complications into the evaluation of certain kinds of
hyperangular interaction integrals. These integrals contain the hyperangular interaction potential and various
powers of the inverse of the total angular momentum operator on the space of hyperharmonics, from which
the zeroth order hyperharmonic is excluded. In this work the simplest one of these integrals has been taken
into consideration. After some intermediate steps, it has been shown that it can be expressed in terms of
elementary functions of the cosine of the angle { ) between the hyperaxes of the potential term for an odd
number of particles. In the case of an even number of particles, these integrals can be given in terms of a
generalized hypergeometric function of the same argument () and its derivatives.

PACS numbers: 02.30.Gp

. INTRODUCTION

The use of the space-folding method in the hyper-
spherical coordinates respresentation of Schrodinger’s
equation for electrically charged particles brings us to
a point where the evaluation of the system’s energy
value necessitates the determination of some compli-
cated hyperangular integrals as presented in a previ-
ous patper.1 Although the convergence of the perturba-
tive series could not be proved, some results up to
second order terms encouraged us to investigate the
method presented there in details. But these investi-
gations need the values of higher order terms; the
evaluation of hyperangular interaction integrals plays
an important role to this end. However, if we con-
sider them generally they are not easy to compute. In
a separate paper we present a numerical method for
this purpose,2 but an analytical expression for them
seems to be a hopeless goal. Before making such a
harsh judgment it is convenient to start with the sim-
plest one and to try to find an analytical result, which
is the purpose of this paper.

In the following sections, we shall define hyperangu-
lar interaction integrals generally, then choose the
simplest one and reduce it to most convenient form by
using several of its properties. Finally the use of
hypergeometric function theory will take us to the de-
sired result.

H. EXPANSION OF THE HYPERANGULAR
INTERACTION INTEGRALS

Let us consider the following general integral

my, gyttt g,
o, R

= f 0F (1A 5 2em(F A5 gm - (74,577
S
4

X "cmp(‘gTAps»l g) -1/260 ng

£: 3N-dimensional unit vector, (2.1)

YThis project has been supported by The Scientific and Tech-
nical Research Council of Turkey.
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where »1y, . . ., w1, represent some positive integers and
the integral is evaluated on the hypersurface of the 3N-
dimensional hypersphere with unit radius. In addition
the matrices A; and the operator £ are defined as be-
low

Aj=wagwly, j=1,2,...,p+1, (2.2)
d
= __L__w)f )%
be== e (i +3N 2)91 ng @ds. (2.3)

i

In the last expressions, u;, 6%

3", and ¢ represent some
unit 3N-dimensional vector, a jth order hyperharmon-
ic,’ and a function in the space spanned by hyperhar-

monics, respectively.

Since we shall consider the simplest of the x,’s here-
after our interest lies in the following integral:

X1 g, 1) = fs 05 (A )1 2em(ETA, 5 0,as . (2.4)

By using the addition theorem for hyperspherical har-
monics® we can write the following equality for £"

Lm F(a) (1)m(]+a T
- Emmza fc (E Mol as

-1 ]

@=(3N~2)/2, & n: 3N-dimensional unit vectors,
(2.5)
where C§ denotes a Gegenbauer polynomial.’

By partial fractions we can obtain the following equa-
tion

1 g T@m — k- 1) 1
JMGH20)™ T e n =k~ D)1 (m = 1)1 (2a)mFT
(=ym=- 0k
X( ]791 (j+207)51> (2.8)

The integral representations of the right-hand side
terms give the following equality:

1 _ (=™ rem-k-1)(=1)F
i"i+t2a)™ T m-1)! (- k-1 pI2a)T"*T
1- R Za
f ( 1) (=Inx)} dx. (2.7)
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Since the Gegenbauer polynomials satisfy the following
relation®:

L)

1-
(7 + a)xjc;x(ng) = 01([1 — 2(£Tn);+xf]un - 1) ,

(2.8)

i1

we can rewrite the Eq. (2.5) as follows:

Fla+1) &% T@m-k -1)(-1)0
(m - 1127 T £t 21O — & = 1) T(2a)*"*T

1 1~ (_l)k.xloz/ 1 _xZ
XLWL x \n-z@%n+ﬁr“'g

(2.9)

£”'qp:._

x (= Inx)* dx @(n) ds, .

If we define the following function

! R 2a
A?(ul, Up) = j(; L fs (£TA1£)'1/2(T]TA277)'1/2 1- (_xl) 0%
¢ Tn

10
(e -
X (= Inx)* dS, dS, dx (2.10)

by using the definition’ of 6y, 8,=[I(c+1)/27*" " we
can write

(| )_(I“(a+1)>2 1
X1\ juy, up) = z,n,onl (7’” _ 1),

([a+1]/2)([a+2]/2
A (uy, ) = Z (;i[] L )iﬁgTj(ul, w),
(2.12)
where (a), denotes Pochhammer’s symbol.® For the

sake of simplicity the « dependence is not shown expli-
citly. B and T in the last formula are defined as

R P L i G 2x \¥
:L X [(1+x7)‘”1+xZ =0, of(= nx)*

xdx, (2.13)

Tj(ul’uil):LJ; (E7M (T AL 8) A (T Aym) 2 dS, dS,,
¢ On
(2.14)

& m: 3N-dimensional unit vectors. (2.15)

l1l. ANALYTICAL EVALUATION OF 8 INTEGRALS

The following transformation changes 8} into
— 2 1—u\'7
V1o = T2 ad , X :( u) ,

1 (1407 = (<11 =) full — ) (1 + )7
B’; = j(; Q+u)*" 1 -2 1 2% B 6’°}

(3.1a,b)

xInf (i i u)du . (3.2)
xg L2m -k~ 1)(=1)*" A ) -u
A B (m — k= 1) 2m)enr 12 e Since we can write
S (oo B as (K 6.9
If we expand Af into a power series in (£'7), we can —H ' U Jes0
write Eq. (3.2) implies
]
1§a* . . & . R (.
&= F{arlolil0 ~ (10 - 1ot - o) + (-D'aljlt- a]p
1)d . .
:EF{ETOI(]II)‘OZ(”f 01(J|—f—a)+02(1\—t—f1)]} , (3.4)
r
where Gl = gt 2j+a+1, 2| )
I =G a+n(+art+D " j+a+t+2]2
1 ! jet+a+l -t -1
gl(jlt):—;I A+ A=) udu o L(j ~t)F(]+a+f)< g_)
2% % +2 I'2j+a+1) ) (3.7)
1 1 —j—a-t+1,2 ) , g (27+a+1 2'1)
T2 (j-t+1)(j-t)2Fl< j—t+2 -1 o1(j ~ 1= o) = G+a+n(j+a+i+1) Wisa+ri2]2

B 2+t F(-j-a-t+1,j-t‘1)
TU-t+nG-ptt j=1+2 2/’
(3.5)
1 1 1
og(jlt):()jof A+ -t dt:—ﬁéjo. (3.6)
0

The use of some linear transformations for Gaussian
hypergeometric functions (Ref. 9, pg. 47) and some
simplifications for the special values of their param-
eters (Ref. 9, pg. 37) make it possible to write the fol-
lowing equations:

2428 J. Math. Phys., Vol. 22, No. 11, November 1981

However these last formulas together with Eqs. (3.4)
and {3.6) bring us to the following result

d*[25T(j+a+HT(j-f, o
% = ‘E{ [ T(2j+a+1) <t+2>

1 1
— 4+ —]85, . (3.8)
" (21‘ AT a)) J°]},=0
IV. ANALYTICAL EVALUATION OF 7 INTEGRALS
Let us consider the 7, given by the Eq. (2.14). For

its evaluation we can choose an orthonormal transfor-
mation on the frame of n that changes 7; into the fol-
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lowing for m':

f f [m (g1 8) + le(uzz £) + Mg (s £) + A-o o
= s

st F +75 + ) (£TA 87
xdS, ds, , (4.1)
where ¢ and u,,, are defined by
o=(F40'"; n,=uoe,, m=1,2,3
(4.2a,b)
ef =(1,0,0], ef =(0,1,0], e =[0,0,1].
(4.2¢,d, e)

The first four columns of the matrix representation
for this orthonormal transformation are u;, wp, w3, and
g, respectively. The remaining columns are ortho-
normal to these four vectors. The definitions of g can be
given as follows

q:(l _ 02)-1/2[£—A2§] .

Another orthonormal transformation in the space of

(4.3)

™, T, 73 takes 7, from Eq. (4.1) into the following form':
J

847°* I'(j + 1)

(1= piusfypi - i

(oms + V1= Fn (1 + 18 + ) 12(E7A, )12

=
g s

xdS, dS, .

¢ 5

(4.4)

By passing to hyperspherical coordinates (7, =cos,y.,,
Ty -1 = 8inf;y 1 cOSO3y 2, * * *) and using some reduction
formulas presented in the previous paperl we can write

4mT(j +3) flf Ty e 2,0
=tGrard ) J (F4Y 2(1 - o) dSdt .
(4.5)

Now let us consider the orthonormal transformation
where the matrix representation has the columns u,,
(1 = Y")Y%(4; — Yu,), and the vectors orthonormal to these
two. Direct post-multiplication10 of this orthonormal
matrix by the three-dimensional unit matrix augments
it to a 3N-dimensional, orthonormal matrix. The use
of this last transformation in Eq. (4.5) is followed by a
rotation in the space of (&, &, &). Finally reduction
formulas’ give the following result for 7,:

2)1/2 M%(l _ #%)a -3

(= I(G+a+H)(a-~2) foI I'J{y

A careful investigation shows that

L 4
f sinf[Yul + 29, V1 = AV = 1 cost
0

+(1= A1 = ud M ae
2
Wy p> V1=,
= 2 4.7
TN <V1_4
-V 1 ;
and
1.1
1o 2u22Y pd(1 = w2y g, gp— 3V L(@-2)
jo‘-/(: ( wimst®) iy ( 1) Mo dt ——8 ——F(a+é)
' 1 5 2
o (313k)
\/-_ F(CY 2) 1 d _j’% 2
=3 I“(a+2) 2 dullhz 1(a+% #1). (4.8)

Therefore
16,”2«*1/21-(]-_‘_%)
Ta+H)r(i+a+1d)
1 v1io uz da_ i3

f —u 2F1< )z

ca-y?) MK du a+3

Tj('}/) =

[(1 - 72)2F1< ~ 2

+

1-%)
uz)du] . (4.9)

Integrating by parts gives the following result

1620+ 1 fl -4 3 z)
T(a+ )T+ a+1) J 2F1(a+% 1-774* Jdu

(1) =

(4.10)

By expanding the hypergeometric function above in
powers of Y% and using the formula for hypergeomet-
ric functions with unit argument (Ref. 11, pg. 99-103)
and then integrating term by term we arrive at the fol-
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24 2vV(1 =W (1 = u®)u, cosd+(1 -y (1 - ud)}

sinbdfdp, du, dt .  (4.6)

f
lowing formula
16" 2(k + })L(k+ a) F( -k, %,
)T+ a+d)  *2\1_

Tk('}’) =

(4.11)

V. EVALUATION OF Aj (v)

By using Eq. (4.10) and (3.8) in the Eq. (2.12) and the
integral representation for ;F; in the resulting equa-
tion, we can obtain the following formula after some
algebra:

. 24-k 204172 Idk I“(oz+t)r(—t) i
N = {a)T{a+1 z)wﬁ[ Ma+1) (t+5e)en(t,7)
1 1 L) Ir(3)
+<§ + 20+ 01)) F(Q"Fi)]}uo’
(5.1)

where Q,(¢, 7) is defined as

2,(t, 1) = J;II(L%%)“—-IzF (aﬂ 'ttl_(1_;ﬂu)u>

a+
xdudu . (5.2)

Linear transformation formula for the Gaussian hy-
pergeometric functions makes it possible to write

T(a+3)T() D(a+3)T(=3)
o+ +HT( -0 T(a+O)T(-t)

(5.3)

Q. (2,7} = ¥, ) +

<2, v,

where 92’ and QS) are

a0, = [ L m (" 1)

xdudit (5.4)
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11
a2, 0= [ [ a-we i,

s=l,a+t; L+t
FI( 3 ‘(1—7’2u2)u>dudu. (5.5)
2
The integration of the Eq. (5.4) over u gives
Q® IG)(a) att, =t
(f r<a+ 1) ZFl C!+ 1- ')’ZFL
(5.8)

If we rewrite the hypergeometric function of 1~ u? in
terms of hypergeometric functions of Y u? and integrate
term by term and then change the resulting hypergeo-
metric function of ¥ into a hypergeometric function of
1- 7% we obtain the following result

o VI (@) @+t =t
%)= 15 —z)(1+2t)(au‘+t)2F1( a-} {1—72)
7T(a) 1

I N CED IR (5.7)

Term by term integration of Eq. (5.5) over « gives

(L=-,(a+l4+n
— _—rj_________t. (v .
(2)( ) Z ( ) ((1+1) ,D)('Y), (5 8)
where

p,e(v):J;1 (1=-72u2)’*”2du:zF1( ALE ‘r") (5.9)

The use of some linear transformations for ,F; results
in

TG+ Q=AY i+, i+3| 1=
P =153y '(2j+3)a?f*“F‘( i+3 'T)'
(5.10)

The last hypergeometric function can however be ex-
pressed in terms of elementary functions as follows

+2,i+3 ~1)i*(Y).
2F1(] 7+75 2 _x>:_( (1; (714()2)1 ¢j+1(1\’), (5.11)
sl i\
@' arctanvy
@) = G S (5.12)

As can be proved by induction ¢,.1(x) can be written ex-
plicitly as

arctanvx

03a(0) = (1)), 2SRRI 21

: (3)p!

= (D), TP+ )7 (5.13)

This last equation implies, after some manipulation

(%)1 <arcsln7 ET(I 2)p+1/2>.

20); (5.14)

pi{¥) =

Therefore from Eq. (5.8) we conclude
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1 —t-l a+t-1 )
@) - — - 2y 2
P = (1+2t)(a+t_%)[1 2F1( y 1 ]
arcsiny _1_ 3 § Hla+t+1),
y T 2akt(a+ 1),3),(p + 1!

3F2<f—t+p, a+l+t+p,1

+1 /2
p+2,a+p+1 .1>(1'7;)P :

(5.15)

By using transformation formulas [Ref. 11, pg. 111,
Eq. (41)] we can write

1
3F2(d

~t+p, a+t+p+§,1.1)_ (p+1(a+p)
p+2,a+p+1 Tl D=L+

(1), (p+1)(a+1),T(a+1)
FG-0)G-0,G+0a-t=-)ari+z),Tla+t+i)’

However, this equation and the value of 3 F1 for unit
argument make it possible to write the following result
after expressing ;F; in terms of elementary functions:

() = 1 [arcsim 7T(y)
T +2t(a+t=-D v T 2l(a+t+HTE 1)

% S (1 1- v")] (5.17)

The use of values of 2 and 2% in the definition AZ(Y)
leads us to the following result:

(5.16)

-t a+t+35,1
3

y 2

od® a2 ( gk D(e+3)Vn (t+3a)

MO = R )@ Wa+ D0+ D(at /-
[ AT 3F2(' -t onl+2 +1, 1‘1_72)
arcsiny () T(a+ 1) IT(~1)
Ty T T (a-9rCE)TC - A+ L+ 9
a+t, -t T(a)v7 1/1 1
XzFl( w-1 ll"}ﬂ*r'('a+;>'z’<’t+r+a>}t=o'

(5.18)

To check the last relation let us put =2, y=1, and
k=0. We obtain

g4nt (23 772>
1) = _
AJ(1) = 9 "3/ (5.19)
and this yields the result
4 368
xi(t i, ) =3 - gor (5.20)

which coincides with the result in the preceding paper.

VI. SPECIALIZATION OF Aj{y) FOR AN ODD
NUMBER OF PARTICLES

For an odd number of particles, « is an integer and
this makes it possible to reduce the hypergeometric
functions in Eq. (5.18) to more amenable forms. If
we write a=n+1, a careful investigation shows that
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S R R

- R=0 (%— ﬂ)k(l)/e ]

(6.1)
and
F(~-t- ,2+r‘ ) (1—x) 2
Ll %_n (E—n)n

d" 1/2 +t (i—ty%*—t
1=V F
dax" [x ( D"y 3

v>:| . (6.2)

However the hypergeometric function in the right-hand
side of the last equation can be expressed in terms of
elementary functions as follows:

Lot 3+ 1
AP )= o
2t 3 )T RirD
(sin(ztércsin\/}') N cos(2tarcsin\/?)) (6.3)
Tx VI-x : '

These three equations and the Taylor expansion into
powers of t makes it possible to evaluate the ;F; ap-
pearing in Eq. (5.18) in terms of elementary functions.

Another investigation of the hypergeometric functions
shows that

P LA R AN (-1)"(}), 1 dr
27t n+t (n+f)(‘+t) (1% dx"

et c08[(2¢ +1) arcsinvx]
x((l = Viax )

(6.4)

This completes the specialization of Ay for integer
values of @ due to the fact that all other functions of ¢
appearing in Eq. (5.18) can be expressed in terms of
elementary functions by using the properties of the
Gamma function.

In the case of half-integer values of o, the I' functions
do not create great difficulties but the hypergeometric
functions, especially the 3F; cause a problem. To show
this, let us consider the simplest case #=0,7=0 in Eq.
(5.18). By inserting @ =#n+ 3 and employing the follow-
ing property satisfied by Pochhammer’s symbols

(1 + 1) (3),
(2 +2)

n+l,
n+1'2

(De(n+2), = el +1), . (6.5)

We can write

1 (n+ 3~k <n+1—k,1‘ )
'>‘2k2(n+1 EAPESL G S L
( 1,1

(2)*‘ SFZG +% x). (6.7)
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The use of some properties of the generalized hyper-
geometric functions shows that [Ref. 11, pg. 111, Eq.

(38)]
-1
’): %2?0' nn+2k;ni)k ‘(n:—l-kl”)

1
Ei; 3F2<1%1’%2 x) (6.8)

All the Gaussian hypergeometric functions can be
written in more elementary form, but the last hyper-
geometric function in the right-hand side of the Eq.
(6.6) cannot be reduced any more. However, a rigo-
rous investigation shows that it can be written in terms
of the dilogarithm function™ with a complex and com-~
plicated argument. Therefore it seems to be expres-
sible at least in terms of tabulated functions.

11,1
F 2y 9
: 2(%,n+%

However we must keep in mind that this is the simp-
lest case, possibly for higher values of & the reduction
of the 3F, in the Eq. (5.18) to elementary, or at least
to tabulated functions will become more difficult.
Therefore, we shall not discuss this point any further
in this paper.

VIi. CONCLUSIONS AND REMARKS

In this paper we have presented the evaluation of the
simplest kind of hyperangular interaction integral as a
function of ¥, for a system of electrically charged
particles. As we recall, 7 is a scalar product of 1
with ;. However these vectors are eigenvectors of the
potential matrices A;, Ay. Therefore ¥ characterizes
the angle between hyperaxes of the potentials. We have
shown that they can be expressed in elementary terms.

Obviously in the case of such integrals of more com-
plicated type, the number of ¥’s will increase and the
evaluation of the 7 type of integrals will become more
difficult. Without obtaining some integral representa-
tion of these last ones, it seems to be very difficult to
evaluate the A kind of integrals analytically. Our stud-
ies are continuing for this purpose.

An interesting point is that nature discriminates sys-
tems with an odd number of particles from systems with
an even number. Indeed from a mathematical point of
view for an odd number of particles the function A is
expressible in terms of elementary functions such as
arcsiny and algebraic functions. But in the other case
more complicated functions such as the dilogarithm
function appear.

Of course another interesting point is to investigate
the A functions, for all complex values of ¥, @, and
even for k. But this is important only in the mathemat-
ical sense, it seems that there is no physical reason
which necessitates the investigation of this point.

A careful lock at the perturbative scheme presented
in our previous publication shows that all of the differ-
ent order perturbative terms will involve this kind of
hyperangular interaction integrals. Therefore we have
the possibility of evaluating some of these terms ana-
lytically. This encourages us to deal with the details
of the more complicated cases.
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Solution of Poisson’s equation: Beyond Ewald-type methods
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A general method for solving Poisson’s equation without shape approximation for an arbitrary
periodic charge distribution is presented. The method is based on the concept of multipole
potentials and the boundary value problem for a sphere. In contrast to the usual Ewald-type
methods, this method has only absolutely and uniformly convergent reciprocal space sums, and
treats all components of the charge density equivalently. Applications to band structure

calculations and lattice summations are also discussed.

PACS numbers: 02.30.Hq, 02.30.Myv, 71.25.Cx

1. INTRODUCTION

The solution of Poisson’s equation for a periodic charge
density is, in principle, straightforward. The practical as-
pects of the problem are of great importance in many areas of
solid state physics, particularly in band structure calcula-
tions. In the past few years, different methods for solving
Poisson’s equation have been developed.' The basic ap-
proach has been to first consider the short-range Coulomb
interactions arising from neutral charge distributions and
then to account for the long-range interactions by lattice
summations.

The problem of lattice sums was first considered by Ma-
delung,” who obtained the self-potential of a lattice. A gener-
al method for treating these sums was developed by Ewald.?
Since then, there have been a number of modifications and
generalizations of this method.**®

In this paper, we propose a new method using the con-
cept of multipole potentials and the Dirichlet problem for a
sphere in which all contributions are treated equivalently.
Basing a method on these ideas was suggested by Ha-
mann,®'° but the general formulation is new. The rest of the
paper is organized as follows: The general considerations are
given in Sec. II. In Sec. III, the Fourier representation of the
charge density (and the potential} is derived, and then the
properties of the Fourier expansion are discussed in Sec. I'V.
Extensions and applications are given in Secs. V and VI, and
at the end are some mathematical appendices.

il. GENERAL CONSIDERATIONS

Consider a charge distribution p(r) localized inside a
sphere S. The potential at a point outside is given by the
multipole expansion"’

& g 47 Y, (P)
Vir)= - , 1
M=2 2 Fp7im e U
where the multipole moments g¢,,, are given by
9im = f Y ¥ (Arp(r)d>r. 2)
S

The actual form of the charge density is immaterial; the same
potential (outside S') could be obtained from any one of an

infinite number of charge distributions that have the correct
multipole moments. This arbitrariness gives us the freedom
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to replace the charge density inside the sphere with another
more convenient one.

If we have a periodic charge density, e.g., a crystal (the
discussion will be in terms of a crystal), we can divide up the
charge into that inside the spheres (centered on atomic sites)
and that in the interstitial region (see Fig. 1):

pir=p, MOl + 3 p(rIreS,), (3)

i spheres
where p, (r){ p;(r)) is the charge in the interstial (ith sphere)
and where the unit step function & enforces this division. {7
refers to the interstitial and S; refers to the ith sphere.)

In general, the charge density given by (3) will have a
slowly convergent Fourier expansion because of the large
oscillations near the nuclei, whereas the interstitial charge
density is fairly smooth and can be continued into the
spheres in such a way that it has a rapidly convergent Four-
ier expansion. We can make use of this observation and solve
the problem of obtaining the Coulomb potential in two steps:
1) obtain the potential in the interstitial and then 2} solve the
boundary value problem inside the sphere.

FIG. 1. Division of the unit cell into spheres (I) and into the interstitial (II).
For a 2-D system, e.g., a film, the dotted spheres are replaced by vacuum
and the unit cell is defined by the lines extending to infinity.
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Since the potential in the interstitial depends only on
the interstitial charge density and on the multipole moments
of the spheres, we can replace the real charge density by a
pseudocharge density

plr)—5lr) = p, (MO (rel )+ T 4,0 (reS)), @)

spheres
with the requirement that the pseudocharge density in the
spheres have the same multipole moments as the original
charge. This pseudocharge density will give the correct in-
terstitial potential, but not the correct potential in the
spheres. Let us assume that we can express {4} as a rapidly
convergent Fourier series (we will come back to this point in
the next section):

plr) = p(Kje™ . (5)
K
From this Fourier series, the interstitial potential is given by
4npK o
Vi = 3 AR )
k7o K

where K is a reciprocal lattice vector (dual space vector). The
potential ¥,{r) is also correct on the sphere boundaries,
hence the potential inside the sphere is a boundary value
problem. The solution to this Green’s function problem is''
(r; is the position relative to the ith nucleus)

Vir) = j piE)G (e ) d
S
R?
V Ry 2C oG
47 on'

where R, isa pomt on the sphere and the Green’s function G
is given by

dn’, 7

8P YinlP) 7 [ (r )]

G(r,r')=4r . = 11— = , (8

)= br S A (®)
where r_ (r_)is the greater (smaller) of r, and #’ and the
normal derivative is
96 _ 3G
on' ar' r =R,

4 rf ! ~r A
= - - (—) Y 3, (7)Y (7). 9)
i Im R,’

Note that since we are using the actual charge density in (7),
we now have the correct potential everywhere. Equations
{5)~(7) represent a complete solution to Possion’s equation.
We now turn to the critical step of obtaining the Fourier
expansion of the pseudocharge density. Unless we can obtain
a rapidly convergent expansion, this method will not be
useful.

1li. FOURIER REPRESENTATION OF THE
PSEUDOCHARGE DENSITY

The pseudocharge density will have a dual representa-
tion: the interstitial charge is smooth and hence amenable to
a Fourier expansion (valid in the interstitial), and the charge
in the spheres will be in a spherical harmonic representation,
which is the natural representation near an atomic site. In
the spirit of the Ewald method (and using the linearity of
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Poisson’s equation), we extend the interstitial Fourier repre-
sentation over all space and subtract it off again inside the
spheres, i.e., if the interstitial charge has the expansion

pilr) =3 p,(Kje™*® (10)
K
valid in the interstitial, then the charge density (3) is

pry=p,r)+ > [pilr) —p,lr)] (reS)), (11)

spheres
where p,(r} is defined over all space by the Fourier represen-
tation {10) which converges to the actual charge density in
the interstitial.

Let the multipole moments of the real charge density in
the jth sphere be ¢/,,. The multipole moments of the plane-
wave charge density (10) in the sphere located at &; must be
obtained in order to get the multipole moments of the total
charge (11) in the spheres. First write (10) relative to

Efr,=r—§),
pit) =¥ p,(K) ™5 ™" (12)
K

Then substituting {12} into the definition of the multipole
moments and using the well-known expansion for a plane-
wave''

e* = S amil (KrY 4, (K)Y,,, (1 (13)

{where the j,(K7) are the spherical Bessel functions), then the
multipole moments of the plane-wave charge in the ith
sphere are given by

q{m-i/—%R‘ K=05 + S 4mi'p,(K)R'*?
K #0
KR,
X.]I+ l( l) eﬂ(-g,Yﬁ"(K)’ (14)
KR,

where R; is the sphere radius of the ith sphere. Finally, the
multipole moments of the charge density (11) inside the ith
sphere are given by

Gim = Gim ~ Qim- (15)
It is these multipole moments that we must consider in creat-
ing the pseudocharge density in the spheres.

Let us replace the real charge density inside the spheres
by a pseudocharge density given in a spherical harmonic
representation where the radial part is expanded in a power
series:

= lelm lm zan i ’ (16)

wherea, and v, are parameters for the power series and the
Q. are constants such that the pseudocharge has the cor-
rect multiple moments. This requirement on the Q,, is

i = 3 Qi [ Y1)V 1elh) 4 [ St
I'm'
or
_ _ RItvt3 ]-1
m = Gim a, ——— . 17)
0 q; [g 771+v,,+3 (
We need to obtain the Fourier expansion of the pseudo-
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charge given by (16) inside the spheres and zero in the
interstitial:

sm== [ 3 piw)|e-mrarr

spheres

=Eze

spheres
where £2 is the volume of the unit cell. Then using (16} in (18),
we have

p.K) = ——ZQ,,,, s

Iml
Xza f Y, (F.)re = ®"d3r,.

After expandmg the exponential as before, this becomes

— K-E,

pilr;) e ™" dr, (18)
'S,

ps(x)—-ﬁ Y Qi e 4n(—iYY,,(K)
imi
KR,
XZKV,+3J- t* ) de. (19)

If weletv, =/+ 2% (g =0,1,2,--), then the integral in (19)
can be expressed as a finite sum of spherical Bessel functions

1 KR;
f M2V dt
()

Kivmes
_REMC &~ AL 20
K % (p—v) (KR)
If we define
n a KR,
A;‘E”zo]?-:;l;—}fo t'+ 242 ) dy, (21)

then using (20} in (21), we have
aT,R’{+27I+3 ( _ l)vzv,,]! j(l’:R;]+v

(m—v! (KR)

Since the sums are finite, we can rearrange them into sums of

like powers of KR,

; V=D

{KR) 29
i_ 1+3 l ijl+l+v 2 7;77R
4i=R V‘_So( 12 (KR, * ,,gv (-t @2

For v = n, the sum over 7 reduces to @, n!R 2", For all other

values of v, let us require

n g niR*

S 10, v=0,1,n— 1. (23)
q=v (71—

This set of equations has the solution (see Appendix B)
a,=(—1"7R¥~" (n) a,. (24)
yJ

Let us consider what condition (23) means. The radial part of
the pseudocharge density for a given / is proportional to [cf.

(16j]
ﬁi(ri)~ i a,,rf*z”

e 3, () ()"

4

The k th radial derivative evaluated at the sphere surface is
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. : ey tiy_(n
9 ~ Ny~ .
ars p’(r')‘,,ﬂ, 2" = (’7)

The factor (277 + I /(29 + ! — k )lis a polynomial in 77 of de-
gree k, hence can write

Zovl|  ~3a 3 -e(?),

fi r=R; p=0 =0

where the @, are the coefficients of the polynomial. Since
this is zero for all k<n — 1 (cf. Appendix A), the first n — 1
derivatives of the pseudocharge density at the surface of the
sphere are continuous. Hence, our choice of 7 is, in fact, a
choice of how smooth a function we must Fourier analyze.

Now let us return to the evaluation of 4 |. Using the
values of @, given in (24), the sum has the value

{KR)
),,2,.R 1+3 Jien+1 (
( KR )n +1
The pseudocharge multipole moments Q },, (17) also depend
on the a,,. Consider the sum

Aj=(- n!R ). (25)

n R?’+27’+3

St = a, ——————,
néo T2A+2p+3
We write this as
Si =(__1)na R;l+2n+3 (—1)7’(;}

o2+ 2p+3’
or finally (see Appendix A)

21+ 1
QI+2n+ 3907

S =(—1ya,R¥+>+7 (26)

The Q/,, are then given by
(= 1G04+ 2n+ 3
2"nla, R¥++3 2l 10

Combining (27) and (25) with (19), we get the Fourier
component

Qim =

(27)

- {(~ 1)
pS(K) _() ( ) {2"’1'0 R 2/4+2n+3
KR )

X {( ~ 1)"2"nla, R i+ +3 (';;R? _"__):l 1 ] e~ 8y, (K),

(20 +2n + 3)!!}
20+ 1

of after simplifying,

e Am o (=024 2n 4 3
pK= 52 @+ 1)

AKR)
Jivne1r 4

KRy~ "
For the case K = 0, we have

e~ *%Y,,.(K). (28)

pk=0=L"5 g, 29)

The Fourier expansion for the total pseudocharge used to
obtain the interstitial Coulomb potential is

plr) = ; [p:(K) + 5,(K)] e™". (30)

A point to notice about the parameter n in (28) is that a
different value of n can be picked for each / value and also for
each sphere.
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V. PROPERTIES OF THE FOURIER EXPANSION

In this section we investigate some properties of the
Fourier expansion of the (pseudo-) charge density. The first
important point is that the Fourier series

pslr) = ;ﬁs (Kje™”, (31)

where the 5, (K) are given in (28), is an absolutely and uni-
formly convergent series for n > 0 which converges to g, (r) in
each sphere and to zero in the interstitial.'? This property
allows one to do the term by term integration needed to ob-
tain the potential. It is interesting to note that the potential
for the / = 0 term is also absolutely and uniformly conver-
gent, whereas in the usual Ewald-type methods*>” this term
is only conditionally convergent.

The step of extending the interstitial representation into
the spheres requires some discussion. This step guarantees
the continuity of the pseudocharge density everywhere for
n>1. In practice, there will only be a finite number of multi-
pole moments considered, while the plane waves that are
extended into the spheres contain multipole moments of all
orders. This means that certain (higher) multipoles from the
plane waves are included in the potential, but are neglected
in the contributions from the actual charge in the spheres. At
first glance this appears to be a disadvantage, but actually
this approximation is quite good. First, the contributions
from the higher multipole moments decrease rapidly (as
r~ "+ Y > R)and hence are small in general. The second
point is that the major contribution to the higher multipole
moments comes from the region near the surface where, be-
cause of continuity, one expects that the charge density is
still well represented by the Fourier expansion of the intersti-
tial. In this way, we implicitly include even higher multipole
moments to a good approximation.

Instead of extending the plane-wave representation into
the spheres, one could match the interstitial charge density
to the pseudocharge in the spheres. This method was reject-
ed for two main reasons: 1) the matching coefficients depend
on the p,{K) and 2) the pseudocharge density is manifestly
discontinuous. The first reason is mainly aesthetic and com-
putational: The particularly simple form of {28) would be
ruined and more computing effort would be required. The
second reason is the important one: Since only a finite num-
ber of spherical harmonics are included in the expansion of

the charge density in the spheres, it is impossible to match a
general plane wave, which contains all spherical harmonics,
onto the pseudocharge density at the sphere boundary.
Hence, higher / components will be discontinuous, thereby
hurting the convergence of the Fourier series since a 3-D step
function converges as K 2%

Let us now consider the convergence properties of the
Fourier series with respect to K. The convergence rate as
{K|— o0 goes as

i @120+ 3 M

Ko (2I+ 101 (KR!
QI+ i
27+ 11 (KR +?
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This would seem to suggest that we should pick » as large as
possible. Unfortunately, the situation is more complicated.
For large n, (2/ + 2n + 3)!! is large and the value of KR, for
which the spherical Bessel function can be replaced by its
asymptotic value increases. The form for the factor

2 +2n+ 3, @20+ 1Mz Y forI=0and [ =4
for different values of n is given in Fig. 2. The important
features to notice are: i) for smaller n, there are larger oscilla-
tions and ii) for a given n, the largest contribution comes
from z less than the first zero of the Bessel function. From
considerations such as these, we have developed a criterion
for determining the best n value for each / given the maxi-
mum value of KR;: Choose the largest n such that the first
zeroofj, , , , ,{z)is approximately equal to (KR,),... . Table 1
gives these values for 0</<8 and (KR ),,,,, $21. Again, it
should be noted that each / component may have a different
n, hence in practice one has larger n values for lower /. This
means that the convergence is best for the lower / values, but
these are, in general, the most important.

With these properties, the convergence of the Fourier
representation of the pseudo-charge density, and hence the
potential, can be monitored rather easily. We have also
avoided the problems associated with conditionally conver-
gent sums.

V. EXTENSIONS

As developed so far, the method is for a system with
three-dimensional periodicity. This is, however, not a re-
quirement. It we have a real system with two-dimensional
periodicity, e.g., a film or surface, we can define a unit cell as
in Fig. 1 where the dotted spheres are replaced by vacuum.
From the theory of Fourier series, '? we can artifically repeat
the film in order to obtain a Fourier representation of the
charge density that converges to the (pseudo-) charge in the
film. In this way, the Fourier representation of the pseudo-
charge density of a 2-D periodic system is exactly the same as
for the 3-D case [Eq. (28)], with the appropriate definition of
the unit cell. The difference will be that now the potential is
not given simply by (6}, but will also include terms such as

1.5
= —
x3|d

£
Lz
=

) 1.0
[

+ | =
0z
ST

+

Il 05
N

0.0 =
8.0 ~— 160
kr

FIG. 2. Graph of the convergence factor of the pseudocharge density. The
[ =0 terms (n = 0,12) have the value unity at kr = 0, while the / = 4 terms
(n = 0,8) are zero there.
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TABLE I. Optimum values of n for different values of / and (KR ),..,, to obtain the best convergence possible of the pseudo-charge density and the interstitial

potential.
v 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A (o) = 20.54 1945 1835 1725 1614 1503 1392 1279 11.66 10.51 936 818 699 576 449
1=0 14 13 12 1 10 9 8 7 6 5 4 3 1 0
1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 12 i} 10 9 8 7 6 5 4 3 2 1 0
3 1} 10 9 8 7 6 5 4 3 2 1 0
4 10 9 8 7 6 5 4 3 2 1 0
5 9 7 6 5 4 3 2 1 0
6 8 7 6 5 4 3 2 1 0
7 7 6 5 4 3 2 1 0
8 6 5 4 3 2 1 0
Vi =% a(K)g(K)e™!I + Xliz, (32) representation of the interstitial potential about the origin,
K the / = O contribution is

In order to obtain the potential inside the spheres, we
need to obtain this potential in a spherical harmonic repre-
sentation. For a standard plane wave, we use expansion (13).
For the case of the complex plane wave given in (32), we use
the expansion (see Appendix C)

oMl = K1 — S (— 1 (F 1)K )
47 1 :Il/z mwKY (r)
241 (I —mll + m)
(33)

Using this result, the rest proceeds straighforwardly.

Up to this point we have used only the translational
symmetry. If we are considering a crystal, the symmetrized
representations (symmetrized plane waves and lattice har-
monics) are the natural ones to use. The extension of the
method to these representations is simple and can often be
written down by inspection.

VI. APPLICATIONS

The ultimate test of the method must be its usefulness.
The method was programmed for the LAPW band structure
method by Wimmer,'* who compared the potential for a
W(001) three-layer film calculated by this method and that
using the old Ewald-type potential generator.'* When only
the / = 0 term is included (which corresponds to the old
method), the two potentials agrees to within a few mRyd
everywhere. To obtain the full potential using this method,
including exchange and correlation in the local density ap-
proximation and keeping multipoles up to / = 8, the com-
puting time was increased by not more than a few percent
{ < 5%). Hence, this is a reasonable method for doing band-
structure calculations.

This method is also an efficient way to calculate lattice
sums. As an example, let us calculate the Madelung poten-
tial for the NaCl structure. In this case, the Fourier coeffi-
cients depend only on the charges at each atomic site:

5. K) = =23 g KR)
!) ( KR )n +1
where C1™ is at the origin, Na™ is at m, and the sphere radii
are equal. The coefficients depend on the vector property of
K only through the phase factor. Expanding the plane-wave

(1 — e~ ®n),
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Vicolt) = o | 5 LA KVUKR) | Yo

To obtain the Madelung constant, i.e., the self-potential
of the lattice, we must subtract the potential due to the
charge at the origin:

Vieoli) = Jér | ¥

The potential inside the sphere is given by (7). Since there is
no charge in the sphere, only the surface term contributes.
Then at r = 0, the total potential is

41 1
;:zerKUdKR)+jE

I ARKR) + | Yoqle

Vir=0)=

This is the Madelung constant. Table II presents results ob-
tained for the NaCl structure for different » values. The
number of terms included in the sum for each n value was
determined by (KR )., using the values in Table 1. The per-
cent difference can be considered as limits on the results: For
a given #, if the number of terms increase, then 4 is found to
decrase. The convergence is quite good with increasing n,
and supports the criterion for choosing n. The usefulness of
doing lattice sums in this way has been demonstrated—ex-
tension to more general lattice sums can be handled in the
same manner.

Vii. SUMMARY

We have presented a general method for solving Pois-
son’s equation in a periodic system. The method is based on
the concept of multipole potentials and on the Dirichlet
problem for a sphere. This method is not just an extension of
the Ewald-type methods, but is a new alternative to them.
Some advantages/properties of the method are:

1) there are reciprocal space sums only,

2) there are only absolutely and uniformly convergent
sums (including the / = 0 and / = 1 terms),

3) general periodic charge densities are handled easily,

4) the convergence properties of the summations are
easily monitored, and

5) all components are treated equivalently.

As in the Ewald method, we have one convergence param-
eter; ours is determined from a simple unique criterion. The
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TABLE II. Madelung constant a for the NaCl structure calculated for
different n# values and compared to the exact result. 4 % is the absolute
difference in percent and N, is the number of distinct nonzero terms in the
sum. Exact result from [C. Kittel, Introduction to Solid State Physics, 4th ed.
{Wiley, New York, 1971}, p. 118.]

n a N, 4%
Exact 1.747565
14 1.747565 22 0.0
11 1.747569 15 0.0002
8 1.747517 10 0.003
5 1.748099 6 0.03
3 1.748214 4 0.04
1 1.735273 2 0.7

freedom of being able to choose different » values for each
sphere and for each / to optimize the convergence is a free-
dom not available in the Ewald-type methods.

The application of this method to real problems has
shown that the method is practical and can be used to advan-
tage for treating those problems where the Ewald-type meth-
ods were used previously.
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APPENDIX A: SOME BINOMIAL SERIES IDENTITIES
1.Proofof 37 (— 1)°(A +Bn)P(T)=0, P<M
The binomial expansion is

(x+ )" = f‘, (’:) xym T,

n=0

(%) = o

Now consider the function
a 4

ax , x=0
If we do the differentiation by Leibniz’s rule, then the k th

term (0<k<p) will be proportional to terms in x given by
(0<k'<k)

[ i eA)c(l . eBX)m

~(1 _ eBX\)mAk'
ox? ]k,x—o

If p < m, then all terms are zero, hence we can write

(A1)

eAx(l . eBx)m

=0, k'<m
x =0

P
a eAx(l —_eBX)m
ax” x=0
a7 &
e (1 —e™ , pzm
B e .- (A2)
0, p<m

If we expand (A2) in a binomial series, then we have
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ap eAX(l . eBX)m
ax”?

x=0
ar = (m) "
= e — 1) et
5xp nZo( ) n x=0
= Sy (m) (4 + Bn)?. (A3)
n=0 n
Then combining (A2) and (A 3), we have
m m
D (*1)"( )(A+Bn)"
n=—=0 n
P
__a__eAX(l _ eBX)m , P}m
= axp x=0 (A4)
0, p<m
1) / /4
2 Proof of Z (— 7)) 2'nl2! + 1)1
o 2+ 2v+ 8 (2l + 2n + 3
n! F(/+ %)

T 2Tri+n+3)
Consider the integral

1
f= J t211+ 1)(1 . tz)n dt.
0

Expand the integral in a binomial series

r= e g (e

n i
— — 1V 2W+2v+2
= B e

Hence, fhas the value of the sum we want:
i (—l)v(:) — jlt2(1+l)(l—t2)"dl.
yv=0 21 + 2‘V + 3 0
The integral is expressible as a beta function, hence we have
no (= 1) 2B(21+3 2n+2)
“,2l+2v+3 2
_ yri+3rin+1)
r'{l+n+3j

> —0E) o T+

i iy (AS)
<2+ 2w+3 2 T{l+n+)

APPENDIX B: VERIFICATION OF EQ. (24)
Consider condition (23)
na,R* _
A I
Let us evaluate the series with the a, given by (24)

a,=(—1y""R 2<"*"’(") a,.
n

Substituting into the sum, we have
n ! 2y n 27
01;77-R [( __ 1)" — nR 2(n — 7 (n) an 77'R '

=X

i=v (M=v 4= n (m— i
1 1
=(—1"R*a, ¥ (- 1)"( .
( 'Ig‘ (n — v}
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Now let ' = 5 — v; then
e a, R
n=v (71—

=(_ l)n—vR 2n 'l

()

. 7 =0
Then from (A4), we have that this is zero for all v < n, hence

= a, 7R 0, v=0,1,.,n—1,
. A (A6)
Ny (1]—1/)’ a,n! v=n,

which means that the a,,’s given by (24) are solutions to (23).

APPENDIX C. EXPANSION OF A “COMPLEX” PLANE-
WAVE

The general problem of determining the expansion in
spherical harmonics of a plane wave of the form
explik, -r; + k,z) has been considered by Kambe'* and also
by Weinert.'® The results of Kambe'* differ from those of
Ref. 16 by a phase because proper account was not taken of
the restrictions associated with the cut in the complex plane
of the associated Legendre functions P /(z).

Toprove(33),i.e,, thecase k, = k;, we do not follow the
full development given in Ref. 16, but rather use a simple
demonstration.'® Consider the plane wave and make the
normal power series expansion which is valid for all complex
values:

SHimiF Rz _ ek [isindy cos(pr - g ) ¥ cosé; ]
z (k || )[

I=0
(A7)

From the theory of the associated Legendre functions, we
have the expansion'’

{cosé + i sind cosg)”

< !
=P,(cosf)+ 2 (+ 1)me —(1/2mmi n!
mzsl ) (n + m)!
X cosm@ P(cosd)
< !
= 1)7e — (1/72mmi n P(cos ™.
m;gn(:t ) _—(n+m)! (cosf )e

(A8)

(The associated Legendre functions P }*(cosé ) have the stan-
dard phase, as for example in Ref. 18.) Using (A8) in (A7)
with the identification

P=@, —@i +m,

we have
™ F iz
& (k||"), PR . I
= 1 W —gm
Z’o T (F )m;_l(¢ ™ — 1) T3 m)

X P (cos@ Je' ™~ o),
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(F 1) [cos, Fisinb, cos(p, — @, )]"

or writing this in terms of the normalized spherical
harmonics

eHirn ¥ kiz
. 1V I — mem 477' 1 172
= Ry [21+1 (1+m)!(1—m)!]
X e "y, (). (A9)

We also quote the general result'®

™ T kz

e U1 (=m\N2 . remom
_g47r'j’('(r)[( 4 (l+m)!) (£ 17

K . .
x p;n(’ z)e*'"'ﬂ]Y,m(r), (Al0)
K
where
K= \/k —k2

and P '(ik,/x) must be treated as a function of a complex
variable.

Note added in proof: After submission of the manu-
script, P. Herzig pointed out the similarity between the pre-
sent method as used for calculating Madelung constants and
the Bertaut method [E. F. Bertaut, J. Phys. Chem. Solids 39,
97 (1978)]. The results of the present method as given in Sec.
VI and Bertaut’s Eq. (2.5) yield equivalent sums for the Ma-
delung potential when the proper identifications are made. I
would like to thank P. Herzig for bringing this reference to
my attention and also for demonstrating the similarity be-
tween the two methods.

'P. D. DeCicco, Phys. Rev. 153, 931 (1967); G. S. Painter, Phys. Rev. B 7,
3520(1973); N. Elyasher and D. D. Koelling, Phys. Rev. B13, 5362 (1976);
A.Zungerand A.J. Freeman, Phys. Rev. B15, 4716 (1977); and references
therin.

’E. Madelung, Z. Phys. 19, 524 (1918).

*P. P. Ewald, Ann. Phys. 64, 253 (1921).

“For a review of Ewald-type methods, see M. P. Tosi, Solid State Phys. 16, 1
(1964).

*B. R. A. Nijboer and F. W. DeWette, Physica 23, 309 (1957); Physica 24,
422 (1958); F. W. DeWette and B. R. A. Nijboer, Physica 24, 1105 (1958).

SF. G. Fumi and M. P. Tosi, Phys. Rev. 117, 1466 (1960).

'W. E. Rudge, Phys. Rev. 181, 1020 (1969).

8. L. Birman, J. Phys. Chem. Solids 6, 65 (1958).

°D. R. Hamann, private communication to H. Krakauer.

'9D. R. Hamann also has a method working on these ideas, but the formula-

tions are completely independent.

"J. D. Jackson, Classical Electrodynamics, 2nd Edition (Wiley, New York,

1975).

12G. P. Tolstov, Fourier Series (Dover, New York, 1976).

BE. Wimmer and H. Krakauer, unpublished.

YM. Posternak, H. Krakauer, A. J. Freeman, and D. D. Koelling, Phys.

Rev. B 21, 5601 (1980).

K. Kambe, Z. Naturforsch, 23a, 1280 (1968).

'*M. Weinert, unpublished.

’E. W. Hobson, Spherical and Ellipsoidal Harmonics (Chelesa, New York,

1955}, p. 97.
'"®M. Abramowitz and 1. A. Stegun, editors, Handbook of Mathematical
Functions (Dover, New York, 1972).

M. Weinert 2439



Linear equations invariant under arbitrary coordinate changes

G. H. Derrick

School of Physics, University of Sydney, Sydney N.S.W. 2006, Australia

(Received 4 June 1980; accepted for publication 12 September 1980)

Linear homogeneous equations of the type i a*dy/dx*

= By are considered, where a* and S are

constant Hermitian ¥ X N matrices and ¢ is an N component column vector. The conditions that
this equation is invariant under arbitrary changes of coordinates are shown to be

a'Cr 4+ Cla* = a6+ —

a’'8;, BCT+ CIB= —péb7,

a*C* + a"C* = 0, where C* is a set of

16 N X N matrices which specify the transformation law for the field components 1. Some
theorems are proved about solutions of these matrix relations and some explicit representations

are given,

PACS numbers: 02.30.Jr

1. INTRODUCTION

Einstein’s equations R, = O for the gravitational field
outside matter possess the remarkable property of invari-
ance under arbitrary changes of coordinates. The term in-
variance is used here in its strongest sense: suppose we re-
place our coordinates x* by another set x'* (which are
arbitrary functions of the unprimed set), and corresponding-
ly transform the metric tensor g,,. and the Ricci tensor R,, in
the standard way, i.e.,

8o =82, (Ox"/Ox")OxH/Ix'™)
R', =R, (0x* /3x")(0x*/Ix™) .

The property of invariance referred to stems from the fact
that R’ is the same function of g',,,, dg’;,, /9x'?,

3%’ ,,/9x'P3x™ as R, is of g,,,, 38,,,/9%°, 3°g,, /Ix"3x".
Hence the transformed equations R ’,, = O are in fact identi-
cal to the original set R, = 0 except for the primes attached
to the variables. These equations contain the dependent var-
iables and their first and second derivatives but do not in-
volve the independent variables, i.e., the coordinates,
explicitly.

This strong property of invariance should be distin-
guished from the weaker concept of covariance. Consider,
for example, the Laplace equation in two dimensions. In
Cartesian coordinates x,y it takes the form

ay &Y
— + — =0. 1
Ix? ? M
Introducing polar coordinates 7,68 the equation transforms to
2 2
1{1 1y 1 &y 5
o o ) NI 2)

Equations (1} and (2) may be written in the covariant form
14 ( . OV )
; (3)

¥ ax* g
where ¥ is the square root of the metric determinant |g,, |
with appropriate values for the metric tensor

<=1 g,=1 8g,=0,

grr=1! g66='2’ gr0=0’

However the existence of a covariant representation, Eq. (3},
certainly does not imply that Eqgs. (1) and (2) are identical in
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form. Indeed Eq. (2) contains first derivatives and explicit
dependence on coordinates, whereas Eq. (1) has neither of
these features.

When matter is present Einstein’s field equations
become

R, -, R= —8nGT, . 4)

If the energy—-momentum-—stress source term 7, can be
written in terms of component scalar, vector, and tensor
fields, then Eq. (4) together with the field equations for the
particle fields again exhibits the property of coordinate in-
variance rather than mere covariance.

The above considerations suggest that it would be of
interest to classify all possible sets of field equations which
are invariant under the choice of coordinates. In general we
shall have N dependent fields ¢, (4 = 1,2,...,N ), whose de-
pendence on the four coordinates x* is to be found from
solution of a set of N differential equations

L2y, ay" /0,9 " /9x'9x",...) = 0. (5)

We now seek a transformation law y*—y'“ associated with
the coordinate change x*—x’* and suitable functions L ¢
such that when Eq. {5) is satisfied it follows that

LE(,ay4/ox",d %" /ox"dx™",..) = 0. (6)
Note that there is no prime on L ? in Eq. (6) since we demand
that the same relations hold for the primed variables as for
the unprimed.

As a first step in classification of coordinate invariant
field equations, we shall consider in the present paper the
simplest possible system, a set of linear, first order, homo-
geneous differential equations.

2. COORDINATE INVARIANT LINEAR EQUATIONS

Suppose we have a field ¥, (4 = 1,2,..,N ), in general
complex, whose dependence on the four coordinates x*,
(A = 0,1,2,3), is governed by N coupled first order linear dif-
ferential equations. For economy in writing we shall use ma-
trix notation. Let 1 be the column vector formed from the ¥
components ¥, and ¥’ the Hermitian conjugate vector, i.e.,
the row vector of complex conjugate fields ¥**. The most
general linear first order homogeneous system may be
written
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za"axl By, (7

where @, (A = 0,1,2,3), and B are N X N constant matrices.
We shall assume that a* and 8 are Hermitian in order that
the current /* = ¥'a’y be conserveq, i.e., d* /9x* = 0.

Suppose we now change coordinates from x* to x'* and
try a transformation law y—¢' of the form

Y'=Dy. (8)
Here D is an N X N matrix which is a function of the coordi-
nates and depends, in a way to be determined, on the func-
tional relationship between x* and x'*. If ¥ were made up of
components of tensors and tensor densities then one would
have D = D (&), where £ is the 4 X 4 matrix of the partial de-
rivatives § 5, = dx"/dx*. Inthis case D (£ ) wouldbean N X N
matrix representation of the group of real nonsingular 4 X 4
matrices, i.e., D (§,) D (§,) = D (€,£,). However, we shall not
impose this representation condition a priori, but instead
shall adopt a weaker hypothesis, relating to the form of D for
infinitesimal coordinate changes, in Sec. 3. The question of
integration to give finite transformations will then be take up
in Sec. 5.

We now require that the primed field equations should
take the same form as the unprimed

N APy

o’ — 3 By, (9)
with the same constant matrices @*,8 as in Eq. (7). The
mathematical problem posed is to find matrices a*,8,D such
that Eq. (7) implies Eq. (9) for arbitrary changes of
coordinates.

Equation (7) may be derived from the variation princi-
ple § §.¥d *x = 0 with

L= W(fa&g—;ﬁ' —ﬁlﬁ) + complex conjugate . (10)

A sufficient condition for the invariance of Eq. (7) is that .
should transform as a scalar density of weight 1;

ox*

ax'*

L=

(11)

3. THE MATRIX RELATIONS

First let us consider the implications of demanding the
invariance of Eq. (7) under infinitesimal coordinate changes.
Such a transformation is specified by four arbitrary infinites-
imal functions v* (x*):

x*=xr 4 v M),
Eh = ax =8 +1h,, (12)
Ox*

where a comma denotes partial differentiation. The transfor-
mation matrix D of Eq. (8) is assumed to possess an expan-
sion about the neighborhood of the identical transformation
of the form

D=1TI+v C;+ second order terms, (13)

where I is the N X N unit matrix and C * is a constant N X N
matrix.
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Let us now substitute into Eq. (11) the transformed co-
ordinates and fields specified by Eqs. (8), (12), and (13). We
obtain to first order of small quantities a linear combination
of the first derivatives v*, and second derivatives v',; . Since
the functions v* are quite arbitrary the coefficients of these
terms must vanish. The coefficient of v/, is

PHa'CT + Cla* — a8} + o*65,

+ complex conjugate — 2y BC* + CI"B + 5"y .
The coefficient of v*,; is
liy'a’Cr + a*Ct — Cla* — CHaMy .

Hence Eq. (11) will hold and Eq. (7) be invariant if the
matrices a’, B, C* obey the following relations

a’C* 4+ a"C! = Cla* + Cla”, (14)
aC* + Clat = a8’ — o6”, (15)
BC:+CMB= —ps%. (16)

Combining Eq. (14) with Eq. (15), we find that each side
of Eq. (14) separately vanishes

a’Cs+a*Ct=0. (17)
Hence we conclude that Egs. (15)—{17) are sufficient condi-
tions that Eq. (7) be invariant under arbitrary infinitesimal
coordinate transformations.

The interpretation of Egs. (15) and (16) is interesting. If
we consider how the current ¢'a*y transforms we find that
Eq. (15) is simply the condition that this current be a vector
density of weight 1. This is a desirable feature in view of the
vanishing divergence of the current. Similarly Eq. (16) im-
plies that ¢'By is a scalar density of weight 1.

4. SYMMETRIES OF THE MATRIX RELATIONS (15), (16),
AND (17)

Suppose a*, B, and C ¥ satisfy Eqgs. (15)«17) and y{x*) is
the corresponding solution of Eq. (7). Then the following are
also solutions

(a) STa?s, S'BS, STICtS, S 'Y,
where S'is an arbitrary, nonsingular, complex N X N matrix.

(b) a"{» B" C*’:, 'ﬁ‘( s xp) ’
where * denotes complex conjugation (without taking the
transpose). A

©Tha*, T8, T4 CLT ", §TT '“xv),
where T 'is any real number and the T'% are the elements of an
arbitrary, real, nonsingular, 4 X 4 matrix.

(d) If we can find further matrices C?, C%, C$ which
satisfy the additional relations necessary to extend Egs. (15)-
(17) to the larger set

a'Ct + Clal = 8! — a6,

ad'Ct+a*Ci =0, (18)
where 8 = o” and Latin indices range over the five values 0,
1,2,3,5 then@ =T, a™, Ck=TkC!, T ' again satisfy
Eq. (18). Here T'}, are the elements of an arbitrary 5% 5 real
nonsingular matrix.

The symmetries (a) should clearly be regarded as equiv-
alence relations, with the transformed quantities belonging
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to the same physical system—the field components have
merely been replaced by linear combinations of themselves.
The role of the symmetries (b), (c), and {(d) is less clear. Per-
haps (b) relates to charge conjugation or TCP invariance.

5. FINITE COORDINATE TRANSFORMATIONS

A. Integration of infinitesimal transformations

Let us restrict ourselves to transformations x'* = f*(x")
which can be connected by a continuous path to the identical
transformation, i.e., there exists a family of transformations
x'* = f*(x",t ) characterized by a parameter ¢, 0<t< 1, such
that

fl(xv’o) = x* ’

fi(xv’l) =f'{(xv) ’

‘m 50 for O<t<1.
oxt

The Jacobian condition enables us to find the inverse
transformation x* = F*(x'},t ). Assuming differentiability
with respect to ¢ we have

X'ty a =X+ dtpxe), (19)
where the function 7( y,t ) is defined by

a A
7= L) .
at x¥ = FYyr )

Equation (19) gives the transformation at parameter value
t + dr in terms of an infinitesimal transformation applied to
the coordinate system x";. Hence we may apply the formal-
ism of Sec. 3 and write a differential equation in ¢ for the
transformation matrix D (¢ ) along the path

Dit+dt)= [I+ 7, x7,t)CID(r)
or

R A (20)
The initial conditions D (0) = I then defines the transforma-
tion matrix D {t ) uniquely along the path, and in particular at
the end point ¢ = 1. In general the result will be path depen-
dent, a point considered further in Sec. C.

B. The transformation matrix to second order

Let us expand the solution of Eqgs. (19) and (20) as a
power series in ¢. Retaining terms up to # > we obtain

xp=x"4+0,
(21)
D(t)= I+ v, Cr+ W' (CECY — 8.CH)
+0(t?),
where
v = 17(x",0) + 4t > [7:,(x*,0) + 7% (x*,01n" (x*,0)] -

If we now take ¢, and hence v* inﬁni'tesimal, we see that
Eq. (21) provides the second order terms in Eq. (13). Note
that to second order D is a function solely of dx'* /dx*.
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C. Path dependence of the transformation matrix D

If we evaluate the third order terms in Eq. (21) we find
that it is no longer true that D is a function only of dx'* /dx*.
We obtain an additional term containing second derivatives
which takes the form

H175%0) + 75, (x%,0)9°(x*,0) 172, (x",0)

x[CiCH —~CHCr—8&5CH + 84CK]. (22)
The presence of the initial #-derivative term %*,, {x*,0) means
that in general D depends on the path. A necessary condition

for path independence is the vanishing of the second term,
ie.,

CiCh ~CHCr=8,CH - 6CY . (23)
These are the well-known commutation relations for the
generators of the linear groups.' They are in fact also suffi-
cient conditions that the representation condition hold, i.e.,
D (£,)D (£,) = D (&,£,). The finite-dimensional matrix repre-
sentations of C { satisfying Eq. (23) correspond to tensors and
tensor densities. Hence if we were to insist on Eq. (23) we
would restrict the components of ¢ to be such quantities.
This seems unnecessarily restrictive and instead we shall
adopt the following attitude: We ignore Eq. (23) and find
what representations we can of a*, B, C * satisfying Eqgs. (15)-
{17). If Eq. {23) turns out to be satisfied then 1 is singly valued
and thus an acceptable physical observable. If on the other
hand Eq. (23) is violated then ¢ is multivalued, since we can
change its value by effecting a sequence of transformations
leading from the identical transformation back to itself along
a closed path. In this case ¢ itself must be regarded as unob-
servable, and physical observables should be singly valued
quantities constructed from ¢ and ¢*, perhaps real quadratic
forms of the type "My, where M is an Hermitian N X N
matrix. For example the current ¥/'a*¢ is an acceptable ob-
servable since it transforms as a vector density of weight 1
and is thus certainly singly valued. This approach is similar
to that adopted in the quantum mechanics of half-integral
spin systems. The wavefunction is there multivalued and un-
observable and all measurable quantities correspond to sin-
gly valued real combinations of the wave function and its
complex conjugate.

The problem of finding suitable observables of quadrat-
ic form reduces to the following. Supose we seek a matrix
M?, (@ = 1,2,...,n), such that ¢'M “y transforms as a tensor
or tensor density with n components. Let K | be the gener-
ators for the associated representation. K 7 will be a set of 16
n X n matrices, matrix elements K [,

(e, =0,1,2,3; a,b = 1,2,...,n), which satisfy the commuta-
tion relations, Eq. (23). For the infinitesimal transformation
x'* = x* 4+ v* we require

@My = (5, + v KW MY . (24)

Writing ¢’ according to Egs. (8) and (13} and equating coeffi-
cients of v, to zero yields

MCr 4+ CH*M*=KSM?". (25)
In particular, if "M % ¢/ is a tensor density of weight W
containing a number of contravariant indices A and covar-
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iant indices ¢ then Eq. (25) reduces to
ML Cr+CIMy
= S EIML —BME) — WML (26)

the summation being over all contravariant indices A and all
covariant indices .

6. REDUCIBILITY
A. Introduction

In order to classify the solutions of the matrix equations
(15)~(17) one needs some definition of reducible and irreduci-

ble representations. The equivalence relations of relevance
are those of type (a) in Sec. 4:

at=S’s,
B'=SBS, (27)
cr=5-'c*s,

where S is an arbitrary, nonsingular, complex N X N matrix.
Two alternative definitions of reducibility suggest them-
selves, depending on whether we focus attention on the ma-
trices a*, B or on the matrices C*.

B. af5-reducibility

A solution a*, B, C* of the matrix equations (15)—(17)
will be called af-reducible if *,8 can be transformed ac-
cording to Eq. (27) to the direct sum form

1A allll 0
a’” = 2 b
0 as,

o 55

where at,, 5, and a,, B,, are respectively N, X N, and
N, X N, matrices with N, + N, = N, N, #0,N,#0. Let us
partition C " in the same way:

= ( Ch Cflz) .
Ch Ch
Note that we do not require in this definition that the matri-
ces Cf),, C'5, vanish. This is because the reduced form, Eq.
(28), implies that af,, 8,,,C%;, and a%,, B,,,C*%, are sepa-
rately solutions of the matrix equations whether or not C*,
and C?,, are zero. Further the field equation (7) decomposes
into two uncoupled equations of the same type, of dimen-

sions N, and N,. Hence it would seem most natural to set

CY,and C o both equal to zero and to thus effect complete
decomposition into two disjoint sets of field equations.

C. C-reducibility

A solution o*, 5,C* of the matrix relations will be
called C-reducible if the matrices C * are reducible in the
ordinary sense, i.e., C* may be transformed to the form

17 C:‘ll C:(lz
Ct=( : cgz)’ (29)
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where the N rows and columns are partitioned according to
N =N, + N,,N,#0,N, 0. If we partition a’*, B’ in the
corresponding way we find that af,, B,,, and C}, give an
N, X N, representation of the matrix equations (15)-{17).
However the field equations (17) will in general not decom-
pose because of the coupling terms a7, 5,,.

D. Analogs of Schur’s lemma

We define a system to be irreducible if it is not reducible.
The following results are proved in the Appendix.

Lemma1.1:1fa*, B,C * is aB-irreducible and a matrix P
exists such that

o’P=Pa*, BP=P'B

then either P ! exists or all the eigenvalues of P are zero.

Lemma 1.2: If the matrix P of Lemma 1.1 has any real
eigenvalue then all the eigenvalues of Pare real and equal. As
a corollary, if P is also diagonalizable then it is a multiple of
the unit matrix.

Lemma2:Ifa’, B,C~is C-irreducible then 8 ~ ' exists or
B=0.

Note that Lemmas 1.1 and 1.2 are much weaker than
the usual result that only a multiple of the unit matrix can
commute with all members of an irreducible set.

7. FURTHER LEMMAS

The following results are also proved in the Appendix,
and prove helpful in the construction of representations.

Lemma 3: If B ~ ! exists then Eq. (7) has only the trivial
solution 3 = 0.

Lemma 4.1: Suppose Hermitian matrices a, exist
which satisfy the relations

o', 0" + a‘a,a’ =a’S* + a6,
Ba,a" +aa,B=p5". (30)

Then C* = a,a* — 8 ¥ together witha* B gives a solution of
the matrix equations. Equations (30) are reminiscent of the
Duffin-Kemmer commutation relations,>> but differ in that
@, is not necessarily to be obtained from a* by lowering the
superscript with the aid of a metric tensor.

Lemma 4.2: If in addition to Eq. (30) the matrices a, of
Lemma 4.1 satisfy the further relations

a,aa, +aaa, =a,6. +ab, (31)

then the representation condition, Eq. (23), holds.
Lemma 5.1: Suppose a nonsingular Hermitian matrix B
and matrices ¥,, ¥* exist such that

7;‘(:-37/(3_1’ 73-=B71B_1 ’
Y'Y +vyY =0, (32)
7/L7/(+?/<yl. 225:('

Then a” = By", C; = — 1y*y,, B = 0 gives a representation
of Eq. (15}17) which is both a¢B-reducible and C-reducible.
B = B also gives a solution, which is however of no interest
on account of Lemma 3.
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Lemma 5.2: 1f the matrices ¥, of Lemma 5.1 satisfy the
further relations

Y.V T 77, =0, (33)

then the representation condition, Eq. (23), also holds.
Lemma 5.3: If the indices ¢, x in Eq. (32) range over the

fivevalues0, 1,2, 3, 5 instead of the usual four values0, 1, 2, 3

thena” = By*, C = — W/*,,B = o’ gives asolution, again

af-reducible and C-reducible. As in Lemma 5.2 the further

condition, Eq. (33), will ensure the truth of Eq. (23).
Lemma 6: If Egs. (15)~(17) hold then

@Pg = Plta”,

BP =P8, (34)
where
P = CrCH — CHCX — 8CH + 8°C* . (35)

Lemmas 1.1 and 1.2 are applicable to Eq. (34) and place
severe limitations on the quantities P*%, which measure the
extent to which the representation condition, Eq. (23}, is vio-
lated. Further constraints on P ¥ come from the Jacobi rela-
tion that the cyclic sum of the triple commutations:
[[CrC#], C 7] must vanish.

8. EXPLICIT REPRESENTATIONS
A. Method of construction

In this section we give all known nontrivial af-irreduci-
ble representations of Egs. (15}-{17). They have dimensions
5,6,10,10,15, and have all been obtained with the aid of Lem-
mas 4.1 and 4.2.

Consider the Duffin-Kemmer algebra whose four gen-
erating elements 3, satisfy the commutation relations

ﬂAﬁLBK +ﬁxﬁLﬁ/{ =B}.5KL +BK5AL . (36)

This algebra has two nontrivial irreducible matrix represen-
tations, one in five dimensions and the other in ten dimen-
sions.* We can clearly obtain a representation of Eq. {30)
from one of Eq. (36) by taking a* = @, = B,, 8 = 0. Appli-
cation of Lemma 4.1 then yields a 55 and a 10X 10 repre-
sentation of Eq (15)-{17).

If on the other hand we allow the indices in Eq. (36) to
range over the five values 0,1,2,3,5 then the nontrivial irre-
ducible representations for 3; are of dimension 6,10,10,15.
Wenowseta' = a, = f,,8 = (const) B to obtain represen-
tations of these dimensions of Eqgs. (15)(17).

Note that in each case Eq. (31) also holds so that we
have also satisfied the representation condition, Eq. (23).
Hence the transformation matrix Dis of the form D (§ ) where
£+ = dx"/dx", and the elements of ¢ transform as the com-
ponents of ordinary tensors and tensor densities.

All representations given are afS-irreducible and C-
reducible.

B. The 5 x 5 representation

This corresponds to the five-dimensional representa-
tion of the Duffin—-Kemmer algebra in 4-space and thus has
B = 0. The nonzero elements of a” are
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(@%,s = @ =1,

(@')ys = @), =1,

(@%)ss = (02)53 =1,

(a3)45 = (03)54 =1.

The first four field components (i/,,3,,¢3,¢a)=(x %x ‘¥ %.x °)
transform as the components of a contravariant vector den-
sity of weight 1,y #, while the fifth component s is a scalar.
This corresponds to the transformation matrix (partitioned
44 1)

1§17 0]
D)= .
@)[ 0 (38)
The field equation (7) takes the trivial form
Y5 =0,
(39)

'ps,/t =0.

C. The 6 < 6 representation

This is obtained from the six-dimensional representa-
tion of the Duffin-Kemmer algebra in five-space. The non-
zero elements of a?, B are

(@)= (@ =1,
(@)= la)e=1,
(@)= (@) =1, (40)
(@)ie=(@V)es =1,
(B)se=(Bles=m,

where m is an arbitrary real constant. The first four field
components transform as a contravariant vector density of
weight 1, the fifth as a scalar density of weight 1 and the sixth
as a scalar, corresponding to the transformation matrix (par-
titioned 4 + 1 + 1)

&7 0 0
D)= 0 g1~ o [. (41)
0 0 1
The field equations (7) are again trivial
I‘X‘,tp, = m¢5 ’
1/’6,” =0 , (42)
s =0.

Note that the four functions y # are quite undetermined. The
appearance of four arbitrary functions is of course to be ex-
pected in the solution of any field equations which permit
arbitrary changes in four coordinates.

D. The 10X 10 representation

First consider the representation with 8 = 0 obtained
from the 4-space Duffin-Kemmer algebra. The independent
nonzero elements of a* are
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(@), = (a0)39 = (a0)4,1o =1,

- (al)ls = (a1)37 = - (al)46 =1,

(43)
- (02)19 = — (a2)27 = (a2)45 =1,
- (03)1,10 = (03)26 = - (‘13)35 =1.

The first four field components (¥ ,1,,15,¥4)=(4 0,4 1,4,43)
transform as a covariant vector 4, while the remaining six
field elements (f6,%7,¥s, 0, % 10)=(Fo1,Fo2:F03:F 23, F31,F 12)
behave as the components of an antisymmetric covariant
tensor F,,,. This defines the transformation matrix D (§) so
there is no need to write it explicitly.

In the case of the 10X 10 representation obtained from
the 5-space Duffin—-Kemmer algebra one obtains the same
matrices for @ as in Eq. (43) and the same transformation
law for . However 3 is no longer zero but has the following
independent nonvanishing elements

(Blss =(Blso = (B0 =m, (44)

where m is an arbitrary constant. Thus the first case, 8 = 0,
may be obtained by setting m = 0.
The field equations (7) are

F'I.K,/l + FKA,L + FAL,K = 0 ’

A, —A,, =imF,, . (45)
Once again the field equations possess redundancy associat-
ed with coordinate invariance. For m #0 the solution de-

pends on four completely arbitrary functions, and for m = 0
on five.

E. The 15 15 representation

This representation comes from the 15-dimensional re-
presentation of the Duffin-Kemmer algebra in 5-space.
Rather than write out the 15X 15 matrices for a?, B itis less
cumbersome to specify the Lagrangian density . of Eq.
(10). The 15 components of 3 are comprised as follows:

F ™. acontravariant antisymmetric tensor density of
weight 1.

J%, acontravariant vector density of weight 1.

A,, acovariant vector.

A, ascalar.

In terms of these variables,

Ylia*y, —BY)
=i(~9‘~*/1”14/1,# +j*’lA,,1 +Af=7,4ﬁ + A tﬂ)
—m{f"4, + A%, (46)

where m is an arbitrary real constant. The matrix elements of
a*, B may now be picked out by comparison of coefficients

in Eq. (46).

The field equations are
Ay, —A4,,=0,

id; =mA, ,

(47)
iFH =mf,
A =0.

As before the field equations contain redundancy—.% ** and
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A may be chosen quite arbitrarily.

9. DISCUSSION

Coordinate invariance implies that field equations can-
not all be independent but must be weakened by Bianchi-
type identities. In the present case there are four such identi-
ties which may be obtained in the standard way’ from the
invariance of §.% d *x. Alternatively they may be derived
directly from Eq. (15)(17). The identities are

(W) + YL.CI* + ¢'C 10 /ox"\ia ¥, — BY)
+ complex conjugate =0. (48)

Equation (48) holds for any ¥, regardless of whether it satis-
fies Eq. (7). We have 2 N unknowns, the real and imaginary
parts of the components of . However because of the identi-
ties there are not 2 N functionally independent field equa-
tions but only 2§ — 4, leaving us with four degrees of free-
dom. Such degrees of freedom correspond to the fact that if
is a solution of Eq. (7) so is ¢ generated from ¢ by a coordi-
nate change x*—x’* (x*), which brings in four arbitrary func-
tions. In order to obtain a definite solution one needs to sup-
plement Eq. (7) by four coordinate conditions, just as for the
Einstein equations.®

The field equations found in Sec. 8 are unsatisfactory in
that they contain too much redundancy. Imposing four co-
ordinate conditions either yields an empty theory or else still
leaves some functions arbitrary. It seems likely that to obtain
a nontrivial system one must depart from the representation
condition, Eq. (23). This condition was not imposed a priori
but turned out to be satisfied in all solutions of Eq. (15)}{17)
found to date. Its origin lies in the condition ¢, = a* which
served to close the algebra generated by a, ,a* and thereby
obtain a solution of Eq. (30) via Duffin-Kemmer theory.
Equation (31) is then automatically satisfied leading to Eq.
(23). One needs to investigate other ways to close the algebra
of a, ,a@*. More generally we need to construct an algebra out
of a?, C*, P without choosing P* = 0.

Finally let us note that it is not within the spirit of the
present paper to use a metric tensor to construct the field
equations. Subject to first finding nontrivial representations
of Egs. (15)—(17), all physical fields including the metric ten-
sor are to be sought via the prescription of Sec. 5C, Egs. (25)
and (26).

APPENDIX

Proof of Lemma 1: We are given a’'P = P ',
1=0,1,2,3,5 with B = a®, where a' is af-irreducible. Sup-
pose Phas r zero eigenvalues so that it may be transformed to
the form

o 2 )
where P, is an r X r matrix all of whose eigenvalues are zero,
and P, is a nonsingular (VN — r ) X (N — r ) matrix. The rth

power of P, is then zero. Let us partition &’ in the same way
as P,

! !

f a, ap

a = T, .
az aj
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Then the identity @'( P)" = (P ")a' yields a!,( P,)’ =0
and hence a!, = 0. Whence @' decomposes into the direct
sum of »Xrand (N — r )X (N — r ) matrices, contrary to the
hypothesis of irreducibility. Hence either » = N and all the
eigenvalues of P are zero, or » = 0 and P ~' exists.

If we know that P has a real eigenvalue A then
a'(P—A)= (P — A)'a’ implies that all the eigenvalues of
P — A are zero since P — A is certainly singular. In this case
all the eigenvalues of Pare A. Finally, if Pis also diagonaliza-
ble, then P=A1.

Proof of Lemma 2: Equation (16) may be written

BCi=(—-Cl*—67)8. (49)
If C ¥ is irreducible in the ordinary sense then so is
— C!*— §*. We can now apply Schur’s Lemma’ and de-
duce that either # = 0 or B ! exists.
Proof of Lemma 3: Given that § ~! exists let us define
y* = ~'a*. Then Egs. (15) and (17) become
Y'Cr+yC=0, (50)
Y'Cr—-Ciyt=yé!. (51)
In particular
€3+ =PC=0.
Multiplying through on the left by 7° then gives
(#°)? = 0. Similar manipulation yields y°¥' + ¥°»' = 0 and
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in general
YV +vy=0. (52)
On multiplying Eq. (7) on the left by # ~! we obtain
W, =v. (53)

Let us now multiply Eq. (53) by ¥°¥'y?y>. All terms on the
left are zero leading to ¥°y'¥*7*¢ = 0. Now multiply Eq. (53)
by y'7** to give y'*¥*¢ = 0, then by ¥*y> to give Yy’ = 0
and so on. Finally one obtains ¢ = 0.

Proof of Lemmas 4, 5, and 6: Lemmas 4 and 5 are best
proved by direct substitution of the assumed forms for C*
into Egs. (15)-(17), and Lemma 6 by direct evaluation. The
algebra is straightforward but too lengthy to reproduce here.
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A class of exact similarity solutions is shown to exist for the Ernst equations with electromagnetic fields. We
reduce the underlying coupled nonlinear partial differential equations for the potentials into a system of
coupled ordinary nonlinear differential equations for the similarity variables. The reduced system is exactly

solvable in terms of elementary functions. These solutions are bounded everywhere.

PACS numbers: 02.30.Jr

1. INTRODUCTION

It has been shown by Ernst' that any axially-sym-
metric stationary solution of Einstein’s vacuum field
equations may be described in terms of a single com-
plex function ¢, which is independent of the azimuth and
satisfies the equation

(Ree)V % =Ve- Ve , (1)

where

=.f & 1 2 a2

(-5 5 ar)
stands for the three Laplacian in axisymmetric coordi-
nates. Equation (1) is also of interest because the SU(2)
gauge field equations on E* can be reduced to a set of
three Laplace equations,? which can equivalently be
formulated?® for static-axisymmetric fields in a form
analogous to (1). Further, Ernst* had also proved that
any axially-symmetric stationary solution of the coupled
Einstein-Maxwell equations may also be described in
terms of a pair of complex functions ¢ and ¥, both of
which are independent of the azimuth. They satisfy a
set of coupled nonlinear partial differential equations of
the form

(Ree+‘~p,2)$ze =($e+2‘ll*$‘ll) - Ve , (2a)
(Ree+!‘p(z)§2\p:($e+2~1’*_v’\p)'G\If. (2b)

For several purposes it is convenient to reexpress €
and ¥ in terms of the following quantities:

e=(£-1)/(§+1), ¥=n/(£+1). (3)
Then Eq. (2) becomes

(88* - 1)V2E=28%(VE), (4)
while the coupled set of equations (2) become

(E&*+7mm* = 1)V 2= 2VE. (£*¥VE+7*Vn), (52)

(EE% + m* = 1)V 2y = 29 (EXVE +1%97) . (5b)

3)0n leave from N. G. M. College, Pollachi-642001, Tamil-
nadu, India.
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Extensive investigations on the structure and properties
of Eqs. (4) and (5) have been carried out by many
authors during the past few years.®® From these in-
vestigations many interesting classes of exact solu-
tions, such as the Kerr, Weyl, Tomimatsu-Sato clas-
ses, have been obtained and new techniques of generat-
ing further classes of solutions have emerged. Very
recent investigations on the single potential equation (4)
also show strong evidence about its complete integra-
bility. Maison® had proved the existence of a Lax pair,
while Harrison'® and also Neugebauer” have found
Bicklund transformations for this equation, Belinskii
and Zakharov!! have applied the inverse scattering
method to construct soliton solutions starting from a
given base solution. It would be interesting to see how
these inverse scattering techniques are extended to the
coupled equations (5).

From a different point of view, these equations are
also known to possess certain maximal symmetry
groups. ®'® The analysis of these symmetry groups,
which correspond to invariance under infinitesimal Lie
transformations, also suggests the existence of a simi-
larity variable of the form

i=z/p. (6)

It is the purpose of this paper to show that systems (4)
and (5) are exactly solvable in terms of the similarity
variable (8) and that the solutions are expressible in
terms of elementary functions of ¢, involving a minimal
set of integration constants. Further these solutions
are finite everywhere in the three-dimensional space.
To our knowledge the type of solutions we report seem
to be new and could be of some relevance. We might
also mention that the existence of similarity systems
having no movable critical points (which is the case for
the equations under consideration here) seems to be an
additional evidence for the complete integrability from
the point of view of Ablowitz ef gl.’s'® conjecture on the
connection between nonlinear partial differential equa-
tions solvable by inverse scattering transform method
and ordinary differential equations with no movable
critical points. This was part of our original motiva-
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tion for the search for similarity solutions to these
systems.

The paper is organized as follows. In Sec. 2 of this
paper, we reduce systems (4) and (5) to a set of coupled
ordinary differential equations in terms of the similar-
ity variable ¢ and in Sec. 3 we solve this system ex-
plicitly. The solutions are expressed in terms of ele-
mentary functions involving a minimal set of integra-
tion constants and these are finite for all values of spa-

tial variables and tend to constant values asymptotically.

In the final section we give a brief discussion of the
results and the analogy of present systems with Heisen-
berg’s ferromagnetic spin system.

2. SIMILARITY FORM

Equation (4) is a special case of (5) and therefore we
will discuss mostly the general case (5) and relegate the
discussion on (4) to the end. After some manipulations,
it is found that the following variable

r=In[V1+Z-~¢]l=n[V1+2%/p*-2/p], (7a)
or
¢=-sinh» (Tb)

is more convenient to work with, instead of ¢ itself.
Accordingly, Eq. (5) reduces to the set of coupled or-
dinary differential equations of the form

(seremr-n Eo2e(G) 2 G 6w
and
dan dé dn
(eam* -0 T =on() w20 G @)

We now make the following transformations (see also
discussion in Sec. 4):

};:Kexp[if-rdr] (9a)
and
n=p exp[i fqdr] s

where k, T, p, and g are real functions of », and sub-
stitute in the set of equations (8). Equating real and
imaginary parts, we obtain the following set of four
coupled ordinary differential equations:

(9b)

(k2 +p2=1)k" - kT?)

=2k(k'? = k272) + 2p(’p’ ~ kTDG), (10a)
(K +p2 = D)2k’ T+KT")

= 4Kk’ T+ 2p(k'pq + p'kT) (10Db)
and
(k2 +p* = 1)(p" = pg®)

=2p(p'2 ~ p*q®) + 2k(k'p’ ~ kTPQ) (11a)
((*+p*=1)(2p"q +Pq")

=4 p2p'q+2k(p'kT +K D), (11b)

where prime stands for differentiation with respect to 7.

Now multiplying Eq. (10b) by x and Eq. (11b) by p and
adding we can show that
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AP+ p*q)  2(2kk’ +2pp”) (12)
(PT+pPq) (K2 +p*-1)
Integrating Eq. (12), we obtain
K7+ pPg=(k* +p* - 1)°C, (13)

where C is a constant of integration. Similarly calcu-
lating {(10b)x« - (11b) xp}, we find that

d{(’f:;———%} =C-d(k?-p?) (14)
and therefore

K27 — pPq = (k% + p? = 1{(k* = p*)C + D}, (15)
where D is the second integration constant. From (13)
and (15), we obtain

7= (1/26®)[ (k2 + p? = 1){(2«% = 1)C + D}] (16)
and

= (1/2p*)[(«* + p* - D{(2p* - 1)C - D}]. amn
Now Egq. (10a) can be rewritten as

(k2 +p2 = V)"~ 2ux’® = 2pp’k’

= (K +p* =1k = 2372 = 2k7pPq . (18)

Substituting the expressions (16) and (17) in the right-
hand side of Eq. (18), and after some manipulations, we
obtain

(k%2 + p? = 1)k" = 2xx'?

- 2pp’K’
=[(k%+ p2 - 1)/ (4 |C?[(1 = D/CY - 4x*].
(19)

This can be reexpressed in the form

)} -(C~ D)2d< ) -~ C2d<%2> .

KI d I
T

(20)
Integrating Eq. (20), we obtain
(k') . 1 2 K2
_ = (C- 5 —-C*—~ +E 21
2(K2+[72—])2 (C D) 8 9 s ( )
where E is the third integration constant. Proceeding

in an analogous manner, Eq. (11a) can be integrated to

obtain
1 C2p2
819 2

(P’
2k? + p? ~ 17

where F is the fourth integration constant.
We now make the following change of variable

pi=y (23)
(21) and (22) to get the following dif-

—(C+D)- +F, (22)

K=x,

and combine Eqgs.
ferential equation:

dy/[(4F* = (C + DY*C*)/(4C")) ~ (v
— dx/[((4E® - (C - DFC?)/(4C*)) -

On integrating, we obtain

- F/c2>2]”2

—E/C?P]1/2. (24)

—l(x——c—2>(1—62)”2+—{8Ex 4C?x2 — Dy 2+ EE’

(25a)
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where
1={4F2 - (C +D)C?'/2/{4E? — (C - D}*C?}'/?. (25b)

Here G is the fifth integration constant. Then Eq. (21)

can be rewritten in the form

& =[(§ R 1) +x(1+1(1 = G*)72)

+ 21—2 {8Ex-4C2x?- (C —D)z}‘/z]

[8Ex — 4C%x?% - (C - D)?]'/2, (26)

which is the final similarity equation to be solved.

3. SOLUTIONS FOR THE ERNST POTENTIALS

To obtain the explicit solutions of Eq. (26), it is more
advantageous to redefine the set of five integration con-
stants {C, D, E, F, G} in terms of a new set {x,, x,, v, A, a}
in the following way. Let

E c? 1/2
xlzﬁ[l-{l—m(C—D)z} ],

E fo 1/2 (C—D)Z
XZZ'EE[I-F{I—ZE—Z'(C—D)Z} ], XXy = g

(0=<x,<x,) (27

so that x, and x, are the two roots of the quadratic equa-
tion

8Ex —4C%x%2 - (C~-D)=0. (28)

This enables us to make an Euler’s transformation of
Eq. (26) in the form

x=(x,2+x,)/(t2+1) (29a)
so that
{8Ex - 4C%? - (C = D)} /2= (2C(x, - x,)t)/(t2+ 1).
(29b)

This, with the aid of three further redefined constants

v:C[( - lcﬁz (1-G2yp/e- 1) +x(1+1(1 -c2)”2)] ,

@
(30a)
2_ lzGZCZ(;c22 -x) ’ (30b)
and

A%=q? -[(C—i - %(1 -Gz 1>+ x(1+ U1 = Gz)”z)]- -C; .
(30c¢)

enables us further to rewrite Eq. (26) as
dt/dr=—v[ (t+ a)? - A?]. (31)

On integrating, the solution becomes

t=-u+A coth(Avr+11nB), (32)
where now B is the sixth integration constant. Using the

original definition of the variable v, i.e. Eqs. (7) and
(32) can be reexpressed in the form
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(A+a)+(A-a)-B[(1 +22/pH)Y2 —z/p A

T Bl e P ] #9)
Thus we finally obtain
k=[(x, 8% +x,)/ (2 + 1)]"Z , (34)

where t is defined as in Eq. (33). It essentially in-
volves six constants A, B, v, «, x,, and x,, pertaining
to the underlying symmetries of the system under con-
sideration. As we noted already these constants are
directly related to the six explicit integrations we have
carried out so far.

Finally, to obtain the Ernst potentials & and , we
need the expression exp[iffdr]. This is easily ob-
tained by using expression (16) for t and the fact that

dt 1
ry-D=- 3 @+ (352)
and the various relations (27) and (29), so that
dat dt
_ 1/2
[ rar=-tx,x,) f(x1t2+x2) et (35b)

Thus
exp[i f Td’}’] =exp{ +i[tan™lf — tan"'(x,/x,) 2]} + H

(Vx, = Vx )t

= itan-l -FZTL—]. iH, 36
exp [( x, +Vx, %) ¢ (36)

where the seventh integration constant H could be iden-
tified with the NUT (Newman, Tamburino and Unti)
parameter corresponding to the fact that if £=£,(7) is
a solution so also is £= (7). e'”. Defining now

_ [(Jx‘- V)t

] (37)

where ¢ is explicitly given in (33), we obtain

exp[if Tdr]:(l+i<p)’/2/(l —i)/?. (38)

Combining (34) and (38) through the relation

t=rexp[i [ Tdr], we finally obtain the first of the two
Ernst potentials explicitly in terms of a minimal set of
seven constants {x,, x,, A, B, v, a, and H}.

As the second order coupled complex differential
equation (8) involves eight integration constants, the
remaining one enters in the definition of the second of
the Ernst potentials n=pexp[i | ¢dr], as a second NUT
parameter when the integration in the exponential is
carried out. Here the quantities p and g are deter-
mined through the relations (25) and (17), respectively,
in terms of k and 7. Thus the complete explicit expres-
sions for £ and 1 are obtained, which are easily seen to
be finite everywhere.

The solutions of the single potential equation (4) can
be obtained by putting £ =7 and scaling by a factor of 1
in the above results. In this limit the various constants

reduce to
G=0, E=F, D=0, I=1 (x=y) (39a)
so that
XX, =%, v=C((1/2x,)-1), A?=2x,, a=0. (39Db)
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Correspondingly, we have

2 = 2(x, 2 4 x,)/ (2 + 1) = BLULH /012 = 2/pP4 + 112+ AMBI(1 +2%/p) /2 — 2/p 4~ 12

while

From (32), the form of ¢ for the present case is

{B[(l + Zz/pz)l /2 _ Z/p]z"A _ 1}2 +A2{B[(1 + Zz/pz)l 72 _ Z/p]zm T 1}2 ’ (403)
exp[i f Tdr] =[{A% + P +i(A% = IIP/2/{A% + P = i(A2 - 1)1} 72]. ¢iH {40Db)
t=A{B[(1+2*/p*)/* — 2/p** + 1} A BI(1 + 2%/p2) /2 = z/p P4 ~ 1} (40c¢)

Thus the solution of the Ernst equation with single po-
tential £, Eq. (4), is the suitable product of the right-
hand sides of (40a) and (40b) involving four arbitrary
constants A, B, v and H.

To compare the solution (40) with the well-known
Weyl, Kerr, Tomimatsu-Sato, Ernst, etc., classes of
solutions,®® one may rewrite the above expressions in
terms of the prolate-spheroidal coordinates (%, ) so
that

p=[F*-D(1-F]'?, 2z=% (41a)
and so
[(1+22/p?)/2 = 2/p]

=[@2+32-1)-23)/[F*- 11 -3 /2. (41b)

It appears that the solutions (40) as well as the solutions
(34)-(38) of the two potential case are of different struc-
ture and encompass a new larger class in view of the
freedom of choice of the different integration constants
occurring in the solutions.

4. DISCUSSION

We have shown that the Ernst equations are exactly
solvable in terms of the similarity variable (7) and that
these solutions are bounded for all values of the spatial
variables. The similarity solutions assume importance
because it is generally expected that such invariant so-
lutions correspond to the asymptotic behavior of gene-
ral solutions as in the case of many integrable sys-
tems.'® From our own point of view, the crucial step
in our analysis is the complex transformations (9). It
was shown by one of us recently!? that a similar trans-
formation leads to the mapping of the evolution equation
of a Heisenberg ferromagnetic spin system on a non-
linear Schrodinger equation and thereby it is completely
integrable. This equivalence has been demonstrated
as a gauge equivalence between the two systems re-
cently by Zakharov and Takhtajan.'® In the higher di-
mensional static situations of the ferromagnetic spin
system, similar transformations lead to the exact sol-
vability of the spherical and circular cases,'® while a
class of interesting point defect solutions are obtained
for the planar and axial symmetric situations. As the
Ernst equation with single potential has close analogy'’
with the ferromagnetic spin system, we were motivated
to apply similar transformations to Egs. (4) and (5),
which lead to the explicit bounded solutions discussed
above. Further analysis of the physical significance
of these solutions is presently in progress.
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Note added in proof: After the original submission of
this paper, an article by Fischer'® appeared which con-
siders similarity solutions for the Ernst ejuation with
a single potential but with an imaginary rotation of the
z axis. Such a system corresponds to the Einstein equa-
tion for cylindrical gravitational waves, as well as the
Einstein—Maxwell equations for colliding plane gravita-
tional and plane electromagnetic waves. For the system
(4) considered here a solution in terms of the variable
p?+2z% is also presented by him. We might point out that
our solutions for this system itself are of a different
nature and our analysis is concerned with the more com-
plicated coupled system (5) and so is of much wider
scope.
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We estimate the diagonal part of the Green’s function for the equation

(—4 72+ Vix)+ 3/0t }ix,t) = 0,1 >0, xe B, where Bis afinite region of the Euclidean space R *
with a regular boundary. In the special case V (x) = 0, xeB, we also obtain bounds for the non-
diagonal part of the Green’s function which are uniform in z.

PACS numbers: 02.30.Jn

I. INTRODUCTION

Kac, in unpublished lecture notes summarized in Ref. 1,indi-
cates how Wiener estimates of the Green’s function for the
one-particle diffusion equation can be used to derive results
about the bulk properties of the free boson gas. The math-
ematical details were supplied in Lewis and Pule.? The same
strategy has been used in van den Berg and Lewis® to prove
results (announced in Ref. 4) about the boson gas in an exter-
nal potential. For this purpose we require Wiener estimates
of the Green’s function for the one-particle diffusion equa-
tion with an external potential. These estimates may be of
use in other fields of application and the purpose of this pa-
per is to provide their proofs.

We estimate the Green’s function of the partial differen-
tial equation

(L + 8/t )ix,t) =0, xeB,t>0, {1)

where B is a finite region of the Euclidean space R ¢ with a
regular boundary dB. We will restrict ourselves to Dirichlet
boundary conditions: ¥{x,t) = 0 for xedB. L denotes the
self-adjoint operator on the space L %(B ) which is given on
smooth functions by the differential operator — 4 /2 + V(x)
with Dirichlet boundary conditions where ¥ (x) is a non-neg-
ative function (satisfying a Lipschitz condition almost every-
where in B). This operator has a discrete positive spectrum
E, < E,<E,- and an orthonormal set of eigenfunctions
{#,(x)} forming a basis in L,(B } (Davies®). Furthermore, the
Green’s function of (1) has the eigenfunction expansion

Kxgit)= 3 expl — tE;)6,(x), (). @)

j=1
Moreover, it has been shown by Rosenblatt® and Ray’ that
K (x,y;t) can be written as

exp( — |x —y|*/2t)
(27Tt )d/2

13

LV(u(rndr]:u(O) — x, ult) = y; ulr)eB },

Kixyt)=

X Ef exp[ -
(3)
where the quantity

E{ exp[ — flV(u(T))dT]:u(O) =x, u(t) = y; u(r)eB }

denotes the average value of

exp{ — J:V(u(T))d‘r]
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for all paths u(-) of a Wiener process on R “ subject to #(0) = x
and u(t} = y. Furthermore Ray’ proved that X (x,y;t ) is con-
tinuous (for all y) at a point x,, of the boundary dB provided
there exists a conical sector with vertex at x,, entirely outside
B. We will assume that this condition holds for all points on
the boundary; we call such a boundary regular. Ray’ has, in
addition, results in the case in which B is an unbounded
region of R? and V (x)— o0 as|x|— oo ; we will restrict our-
selves, however, to the case in which B is a bounded region.
Our main result is that for # small

K (xx;t)~e™ Y9/ 2me )i (4)

at all points x which are not too close to the boundary. Ex-
pression (4) can easily be understood from formula (3). For
small times 7 the probability is small that |x — u{r)} is large,
so we may replace u(7) by x and B by R ¢, provided x is not
too close to dB. This has been called the principle of not
feeling the boundary.? Integrating both sides of (4) with re-
spect to the volume we have, for 7 small,

N 1 )

j;lexp( tE)) T J;EBe dx. (5)
This is allowed, since most points x are far from the bound-
ary because the boundary is regular.

In Sec. 2 we will estimate the Green’s function of the
differential equation (1) for the special case ¥ (x) = 0, x€B. In
Secs. 3 and 4 we will calculate bounds on the correction
terms in (4} and (5}.

2. A UNIFORM ESTIMATE WHEN VIS IDENTICALLY
ZERO

Theorem 1: Let K (x,p;t ) be the Green’s function of Eq.
{1) with ¥ (x) = 0, xeB, and with Dirichlet boundary condi-
tions for ¥(x,t ) at dB.
Then

Koxpit) — exp( —(211;;3;] /2t) \

2

d
2 cxp((4\/2—6) d:),xeB, yeB, 150, (6)

< (2 Tt )d /2
where d, is the distance of x from 3B.

Proof: Let 3, denote a hypercube with center x which
lies entirely inside B and such that at least one corner vertex
lies on B. Then the length /. of an edge of the cube is not less
then (2/d Yd, . From (3) we have
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exp( — |x —y|*/2¢)
(21Tt )4/2
X E{1:u(0) = x, u(t) = y; u(r)eB }

exp(— |x — y|"/2t) -
< T E{1:4(0)=x,

u(t) =y; u(r)eR 4}

_ exp(—|x —y|*/2t
- (zlﬂ.t)d/zl ) (7)

0<Klx,p3t) =

We consider two cases:

(i) |x — y|>al,, where a€[0,}). (We will choose a later).
In this case we have by (7) the bound

exp( — |x — y|*/2t) exp( — |x — y|*/2t)
K 3, yt - <
ofxp;t) . (2t )72 (2mt )"
—a’li/2t
<exp( a ) _ )
(27" )d/z

(ii) |x — y|<al,, where a€[0,}). It is obvious that ye(],
since a<}. Because of the inequality (7) we have only to de-
rive a lower bound for K(x,y;?)

- exp( — |x —y|*/21)
Ko pit)>SP (2'm - 2
X E{1:u(0) = x, u(t) = y; u(r)e, }. (9)

Denote the right-hand side of (9) by K (x,y;t );K5 (x,y;t ) is the
Green’s function for a cube with edges with lengths /, and
center x. We have the following explicit expression if we
choose x as the origin and the rectangular coordinate frame
parallel to the edges of the cube:

KD (O’y;t)

i=1

With the help of the Poisson formula® we obtain

d exp( — y2/2t)
K (0y;t) = ‘l;[’ ——_——(21” ¥

. k212 ky.l
X[l+22(—)"exp(— —= )cosh yt]

k=1

e~ V(x)

(27”)d/2
e~ Vix [ ( 2d2)

<————12de z
erp 9\ g )T

d7'

oy ){

( 217'7'(t —7)
at all points x where the Lipschitz condition holds.
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d + o 2k + Ny,
=H(7}k; exp[———(2k+l)2] 0s 2K+ IImy: t )y: )

J:er;eBa'u (V{u) — V(x))(

)dn exp(t(V(x) — Viu)—

t )d /2
_— exp| —
2rr(t — 7) p(

The terms of the alternating series in k are decreasing pro-
vided |y;| </, /2. The term k = 1 is negative so the sum is
also negative but larger than or equal to — 1, since the
Green’s function is non-negative. With the use of

H(1+a)>1+2a,,

i=1 i=1

— ]<a’.<0, d=12..

we have
— Y2 /2t
Ko (x.p;t)> CXP(; ;;/2 )
k22 kyl
X [1+22 2(—)"exp( x)osh dilx
i=1lk=1 2 t J
exp( —y2/2t) ( 5 ) Vil ]
N S P AR R = ) cosh
(2 ) ,;CXP PR
exp( —y*/2t) ( 11 ;i |Z, )
>R VA 1, Yille
(27t )2 ,ZICXP 2% + t J
exp( — y*/2t) ( 1% )]
_— 1|1 —2dexpl — —(} —a)}|, 10
> L ol - =-a) (10

since |y|<al,. Now, we choose a to be the positive root of

l—a=a%/2.Soa= —1+ \/2, which is also less than J.
Combining the results (7}, (8), and (3) we arrive at Theorem 1.
If x = y we may choose a@ = 0 and we have

L | _2d (_ 2d} )
Qe )22 | (2t )2 P dr /)’
(11)

which is a stronger inequality than one would obtain from
Theorem 1 by putting x = y. Notice that Theorem 1 is a
stronger result than that of Arima'® since it is uniform in ¢.
On the other hand we have obtained it only in the case of
Dirichlet boundary conditions.

Kolx,x;t) —

3. THE MAIN ESTIMATE

Theorem 2: Let B be a finite region in R ¢ with a regular
boundary dB and let ¥ (x) be a non-negative Borel-measur-
able function defined on B. Let V (x) satisty a local Lipschitz
condition of the form

[Vix)~ VX)) <Mx)|x —x'|% O<a<l

for almost all pairs x, x’ in B; then

t|x—u[2>

27(t — 7)

et
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Proof: From the theorems of Ray’ and Rosenblatt® it follows that
e~ tV(x) — tV(x)

—_— e t
@m )y Kest) = (2t )47 [E[l B CXP[ _J; (¥ (u(r)) = Vx) dT] u(0) = u(t) =x,u(r)€B]

+ 1 — E{1:4(0) = u(t) = x;u(r)eB }]

e~ tV(x)

< (2t 272 [E[L i:z(u(‘r)) - V(x)]'(TT:u(O) = u(t) = x;u(r)eB ] |
— x — e~ Vix d B ' __t—_ ds2 3 M
. exp( a )} (2t )72 Uo dTJ;eBdu W =V ( 2mt (¢ — r)) e"p( 27(t — 1) )
2d ( _ Zdz )] e tVix) { J-xd J V( ) ,
+ 2dexp at < 27 U T » u (V(4) — V(x))

(=) el = )|+ 2ol - 2) | 1)

by the inequality | — e ~ *<x, Theorem 1, and Fubini’s theorem. Moreover

1 t
K(xx;t) = 2 ]E{exp[ - J; V (u(r) dT].u(O) — ult) = x;u(r)eB ]
— t ir— — tV(u(), - —
<(277't )4/2 ]E{f e u(0) u(t) x;u(t)eB ]

(2;;:4 i SRR tz‘:-c(t_—ufl)z W= (14

by Jensen’s inequality and Fubini’s theorem. Combining (13) and (14) we have estimate (12).

4. AN ESTIMATE FOR THE PARTITION FUNCTION

In this section we estimate the correction term in (5). This can be done by simply integrating the inequalities (13) and (14)
from which an estimate follows. However, due to an inequality of Ray’ the result can be improved.
Theorem 3: Let V' (x) and B be as in Theorem 2, then

e Vi — 1V (x
/gl exp( — Leﬂdx P <(2m‘ )d/z J‘ dx-e ! {Zd exp( — 2d2/dt)
_ _tlx—ul?) t /2
o ar J;eadu Viu) = Vx) exp( 27(t — 7')) ( 2rr(t — T)) ]
(15)
Proof. We first prove an upper bound (Ray’).
i expl — (E,)
—J K(xxt)dx<——%;f far E{e = *Y“™M:4(0) = u(t) = x;u(r)eB }
_ ot —u?) t a2
27rt )‘”2 J Jc; J du: exp( Vi) |27'(t —-‘7-) ) ( (mr)(t — 7'))
t]x — uf? t 472
27Tt )d/z .Lkdd f J du exp( —tV(u) — 2t — 1) ) ' ( (2rr)i — T))
—tV{ “)du, (16)

T om )d 72 )t

by Jensen’s inequality. Moreover it follows from (13) that
e\tV(x) e—tV(X) t t d/2
J dx (K(x,x;t) — ——)> —f dx ————{ f dr | du(V(u)— V(x))( ————-—)
xeB (2?2 xeB (2t )¢ "? 0 ueB 2mr(t — 7)

] _t|x—u|2 (__ 2d)2c>} 17
exp( YR ). + 2d exp - (17)

Combining the bounds (16) and (17) we arrive at (15).
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We consider the generalization of the customary Bicklund transform (=BT) for the two-
dimensional (2D) KdV equation, (u, + 6uu, + u,.. ), + 3a’u,, = 0, with a being constant. A
nonlinear superposition formula has been obtained and it is shown that the present generalized
BT can produce multiple soliton—-multiple decay mode solutions.

PACS numbers: 02.30.Jr, 02.30.Qy

{. INTRODUCTION

Recently “solitons” have become widely recognized as
an important fundamental mode of certain nonlinear sys-
tems.' In these nonlinear systems, any initial disturbances
evolve as superpositions of solitons and ripples (decay mode),
where each soliton is stable and has infinite life time while
ripples are unstable and decay as time passes.>* So far, com-
pared to the well-investigated soliton mode, this decay mode
is not well understood except for a few studies.*”’

In this paper, we investigate this decay mode by taking
the example of the two-dimensional KdV equation (or Ka-
domtsev—Petviashvili equations) written as®®

(t, + 6uu, +u,,,), +3a’u,, =0. (1.1)

Here a is an arbitrary constant. Throughout the paper, sub-
scripts x, y, and ¢ represent partial derivatives. We derive
explicit multiple decay mode solutions for Eq. (1.1). Just as
soliton solutions have the nonlinear superposition property,
the present decay mode solutions aiso have the nonlinear
superposition property. Moreover, solitons and the present
decay mode also have the superposition property with re-
spect to each other. This means that the general solution to
Eq. (1.1) may be given by the superposed state of multiple
solitons-multiple decay modes colliding with each other,
preserving their identities. Physically, the only difference be-
tween solitons and present decay modes is that solitons are
absolutely stable while decay modes vanish eventually as
time passes.

Our present analysis is based on the bilinear Backlund
Transform (hereafter abbreviated as BT) method, which is
BT theory'®'" performed in the transformed bilinear varia-
bles.'*™'% In Sec. 2, we derive a generalized bilinear BT and in
Sec. 3, we study commutability and the superposition prop-
erty of the obtained BT. In Sec. 4, by using the obtained
superposition formula, we derive simple multiple ripple
mode solutions and others, while in Sec. 5, a generalized BT
in the original physical variables is presented. The brief re-
sults of the present work have been reported elsewhere.'®

11. BILINEAR BT

In the following bilinear BT theory, we transform every
quantity from the physical variable u to the bilinear variable
/- The reason is that the form of solution becomes simple and
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transparent in the transformed bilinear variables.
By the dependent variable transform

u=2Inf),
Eq. (1.1) is transformed to the form'’

{(Fff)/ [ =0, F=D D, + D% +3a’D}. (2.2)
Here bilinear differential operators D, ,D,,D, are defined for
arbitrary functions a,b as!?>!*
Dfx D,’v" D 7 a(x,y,t )b (X,.VJ)

E(ax - ax' )[(ay - ay' )m(at - al’ )n

Xaep,t )b (x' 't ) o =y =y =0 (2.3)

We consider two different solutions u and «’ of Eq. (1.1) and
consider a transformation between u and ' (which is the BT
to be investigated). We take a dependent variable transform
alsoforu’asu’ = (2Inf"),, . The simplest relation connecting
u and u’ is given by the direct subtraction of Eq. (1.1} for u
and u’ which, after integration twice with respect to x and

setting the integration constants equal to zero, can be trans-
formed into the form

P=FfNf [ — [AES-f)=0.

Now, instead of the original variables 4 and «’, we consider
everything in the transformed variables fand /. The relation
between fand /'’ which satisfies Eq. (2.4) is a bilinear BT. We
have found a general bilinear BT as follows:

{D2 +2AD, +aD, + (u+ad (x +x )} £ f =0, (2.5)
{D, + D} —3aD,D, — 6aAD, — 3(u + al,(x + x,))D,

—3a(v +p,(x + x,) + lad,, (x + x, )} £ f =0,
(2.5b)

2.1)

(2.4)

where A = A (y,t), o = u(p,t), v = v( y,t ) are arbitrary func-
tions of y and ¢, while x, is an arbitrary constant correspond-
ing to the initial position of the wave packet. We call Egs.
(2.5a) and (2.5b), respectively the space part and time part of
BT. In the case of A = v = 0, u = const, Egs. {2.5a) and
(2.5b) reduce to the one obtained by Hirota and Satsuma.'’
In Appendix B, we show that Egs. (2.5a) and (2.5b) satisfy
equation (2.4).

Now we check the generation of solitons and decay
mode by the present BT. When /= 1 (1 = 0; trivial vacuum
state), Egs. (2.5a) and (2.5b) become pure linear equations for
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f. For the choice of the parameters
A=—al/2p= -k} v=—k?, (2.6)
where /, k are arbitrary constants, we have the solution
f=ce®+ce b,
O=k(x + Iy +wt)+ 6, w=—3a?—4k? (2.7)
wherec,, ¢,, k, [, and 6, are arbitrary constants. This solution
(with ¢, = ¢, = 1) corresponds to the well-known one-soli-

ton solution, #’ = (2 In f),, = 2k *sech?@. On the other
hand, we have found that for the choice of parameters

A= _2FN - 42

12at

2 1 1(1 3)
— —f gt ad = ——{—_—61%), (28
v a ,u+3 Y 3a\12¢ 2.8)

there exists another type of solution to Egs. (2.5a) and (2.5b)
as

/' =c3Ailz;) + ¢ Bilz;),
z=(x + x,)(12¢)" 13 + (—{i}i)z(lzz )=,
a

where ¢;, ¢, are arbitrary constants and Airy functions Ai
and Bi are two linearly independent solutions of the ordinary
differential equation

w,,{z) — zw(z) = 0. (2.10)

Solution (2.9) is the similarity type solution. Clearly, our pre-
sent transform u’ = (2 In f’), . indicates that the pointf' = 0
gives |u'| = w. Since f’ of Eq. (2.9) allows /' = 0 at some z,
values, it is actually a divergent solution. However, as will be
shown later, at the higher-order stages of successive BT’s, we
can construct nondivergent solutions of this type. For the
higher-order transformation, we should consider the com-
mutability and superposition properties of the present BT.

Il. COMMUTABILITY AND SUPERPOSITION
FORMULAS OF PRESENT BT

First we consider the BT relation depicted in Fig. 1,
where solid lines represent BT. Furthermore let us assume
that f1, = f5,. Then the space part BT is written explicitly as

[D: 424D, +aD, + { u, +ad,x+x)} 1 fo /i =0,
(3.1a)

}\p\\)\

f

FIG. 1. Solid line represents the Bickiund Transform (=BT) with the
respective parameters attached to the line. It can be proved that the pre-
sent BT has the “commutability” property. Namely, operations of the BT
first with parameters A 4,v,, and then with A yu,v, result in the same
function {f,,) as operations first with 2,u,v, and then with 4,z,v,.
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(2.9)

[D;Z( +24,D, +aD, + {1, +a/lly(x +X,)}]f1~f2‘ =0,

{3.1b)
[Di +24,D, +aD, + [ p, + ady,(x + x,)} 1o /a=0,

(3.1c}
[Di +24,D, + aD, + {12+ ad,,(x + x,}} ]flflz =0

(3.1d)

Muitiplying Eq. (3.1a) by £, /5, and Eq. (3.1b) by — f, f};
adding each other and using (A6}, we obtain

D (D, fo for) oSy +So forDs f2 £1)]
+ (24,D, + aD,) fofor o /i =0 (3.2)

Similarly, from Egs. (3.1c) and (3.1d) we obtain Eq. (3.2) with
land 2 interchanged in every subscript. By subtracting Eq.
(3.2) from Eq. (3.2) with subscripts 1 and 2 interchanged, we
have

D, fofi{(Dy + 4, = A3) £ /i} =0, (3-3)

which gives the superposition formula

Sof=cpt D, — A+ A fifo (3.4)
with ¢(p,? } being an arbitrary function of y and ¢. Equation
(3.4) generates a new solution £}, if we have three old (known)
solutions: £, f,, and f5.

Although we have obtained an explicit superposition
formula such as Eq. (3.4), the above argument was based on
the assumption of commutability of BT, £}, = f;,. To be rig-
orous, this assumption must be proved. By a rather tedious
calculation, we can prove that if ¢(p,t ) is chosen as
cn,t) = ¢ ft)''? with ¢, representing an arbitrary constant,
commutability acutally holds { f, = f,,), and the new func-
tion f,, constructed by Eq. (3.4) is actually a new solution
(Fig. 2). We give the details of this calculation in Appendix
C.

IV. GENERATION OF SOLITONS AND RIPPLONS

Now we consider generation of explicit solutions of
physical interest. Since we have the relation u = (2 Inf),,,
multiplication of fby an arbitrary function of y and ¢ does not
affect u. Therefore, for convenience, in our superposition
formula (3.4), we drop the unessential (¢)'/? factor and
consider

flz «fo 1(Dx — A+ /iz)fn'fz- (4.1)
f
1 \ '{?
N,
W e
N \\
fo cfy (D,-Ar#Az) 085 (= Ti)
4 »
91{909 i //
b
-~
1,
2

FIG. 2. Solid lines represent assumed BT and broken lines represent the
relation which will be proved to be a BT.
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In the following, we use the property of Airy functions:

D, Bi(z,)-Ai(z;) = (12¢)~'*{Bi'(z,)Ai(z;) — Bi(z,)Ai'(z;)}
=(12¢)" 371, (4.2)

(xi — x,)7'D, Ailz;)-Bilz,)

= (12:)—lfdx Aifz;)Bi(z,), (forp, =y,) (4.3a)
(x; — x,)7'D, Aiz,)-Ai(z,)
=(12¢)! f “dx Aiiz;)Ailz), (forys =y)  (4.3b)
lim (x, — x;)~'D, Ai(z; }-Ailz,)
o = Ai,, (z)Ai(z;) — {Ai,(z)}’
= (12¢)~" f “dx Aifz,), (fory. =y,). (4.3c)

In Eqgs. (4.3b) and (4.3c), the same relations hold for Bi in-
stead of Ai. Here we note that integrals in equations (4.3a)—
(4.3c) are indefinite integrals. Namely, the lower bound can
be any constant including + o.

By taking the proper choice of ¢, ¢, in Eq. {2.9), we can
have for example,

fo=1, fi=pAilz;) + (x, —xl);”— Bi(z, ),

— piAiz,)
/2 X, —x,,

(yr =x) (4.4)

where p, is arbitrary constant parameter. In this case Eq.

(xy-%]m
,+...1_._1_.._B

Ay v
2
Py
1 X=X, 1‘/;‘2
[1-rippton]
ol A fan
TS 1JAA2
Xy =Xy
1 le'»xg ﬁ1A2
A; AJA1A2
[x2-x2]
1 XJ=X, 1 +_/A22
[1-ripplon]
[xpr-xo)m
Ay BJ

022

FIG. 3. Generation of two-ripplon solution by the BT for the simple case of y, =y, =y = )

A,=p,Ai(z,), B,=p,Bilz,), §=(12¢)"**§7dx.
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(4.1) generates
fra 7D, Bilz, - Ai(z,) + p? (12¢)"
x [ dx Az, 1aiz), (50 =) (4.5)

In the limit x. —x,, this reduces to

Sz L+ pi(12t )—2/3fxdx Ai%(z)). (4.6)
Similarly we can obtain

fizx 1+ pi(12t )‘2’3fxdx Bi%(z,). (4.7)

These are two independent types of solutions different from
the soliton mode. We call them “ripplons”. The Ai? type is
the same as the one obtained by Johnson and Thompson'®
and Reddekopp'® and the Bi® type is new. Now it is worthy
to look at the nature of the solution given by Egs. (4.6) and
(4.7) briefly. From u = (2 In f), ,, we see that both solutions
have limit 4—0 as -— + o . From the definition of z, in Eq.
(2.9) we note that at any given time ¢, the points in the xy
plane on the parabolic line x + x;

+ ((y +y://a)*[1/(12t)] = const have equal value of u
(namely constitute an equicontour of u). As time ¢ increases
in0 <t < + o, thecurvature of this parabola becomes more
and more flattened. Due to the equicontours, essentially one-
dimensional information of the cross-section profile of
u{xy,t) at y = const (say y = — y,) is sufficient to draw the
complete profile of u(x,p,t ) over the whole xy plane. The
graph of the cross-section profile for the Ai® type solution,
Eq. (4.6), has already been reported in the study of cylindri-

- A1 4./;\‘2]

eq. (4.8)

(2-ripplon)

-al thgz]

. Special abbreviated notation is adopted as
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cal KdV solutions? and recently for the present system'® precisely with the solution of the linear initial-value problem

and is seen to be roughly one hump (either large or small) with initial condition u(x,,0) « 8(x)5(y), which gives a neat
plus oscillating tails. Thus the whole form of this decaymode ~ physical explanation for the present ripplon solution. In the
is like a horseshoe with oscillating tails both decaying in higher orders of successive BT’s, we can have a multiple
amplitude and flattening its parabolic curvature as time superposition of ripplons and solitons. By the example
passes. Reddekopp'® shows that in the z— oo limit, the Ai® shown in Fig. 3, we obtain two-ripplon solutions

type ripplon tends to « (1/¢)Ai(z;)Ai’(z;) which coincides
J

1 +pi(12¢ )_2/3fxdx Ai*(z) pplll2s )"2/3fxdx Ai(z,)Ai(z,)
f= (4.8)

pzp,(12t)“2’3j dx Ai(z,)Ai(z,) 1+ p3(12¢ )‘2/3f dx Ai? (z,)

where p,,p, are arbitrary constants and for brevity we have considered the simple case of y, = y,( =y, =y, ). Similarly, by
the procedure shown in Fig. 4, we have the one soliton—one ripplon solution written as

!
= (¢’A,, +e"YA —‘(Dx LR —9—) oS
f=l4,, + 1) + Dot 2 Jar Lo

f,=(12t)7234,e°(4,, + YA)) + [1 + (12t)'2/3f dx Af]ee{Y2 —z,(12¢)7%3},

f=[{z,(12¢)7P + Y?J4, + 2YA |(1 + €*°/2k) + 2k (4,, + YA,),

Y=y +y)/12at —al/2 —k, A,=p,Ai(z)), (4.9)
where 6 is the same as in Eq. (2.7). In Eq. (4.9), in the limit /— o with x,y being finite, we have
Y —al/2 —k(=Y_), Ailz,)/Aiz,}>0, f,—Y2% & f,—Y_pAiz){Y_(1+e*°/2k)+ 2k}

and the one soliton—one ripplon solution tends to the limit which is seen to be equivalent to the one-soliton solution.
[, as This represents the limit where the decay mode has disap-
peared and only the soliton remains stable. As shown above,
Sof, <1 +e°*92k, =k +al /2)/(k —al /2), in each even stage of successive BT’s, we have physical solu-
(4.10)  tions. We can also have the solution given by Eq. (4.8) with
[xy=%y]m
A+ 2 v
Py
X - X 14+ ﬁ 2
1 yi'=y, '
(1-ripplon}
A, fa
[xy-%]
1 x1:-»x1 (Dx+%_,a_za);\1.e9 eq. (4.9)
k'=k
( 1-soliton— 1-ripplon)
0/
& fo
20
1 K~k Y| 1 +/ dx e’

(1-soliton)
[k'-k] P+ &
k”+k

FIG. 4. Generation of one-soliton—one-ripplon solution by the BT. Special abbreviated notation is the same as in Fig. 3. 8 denotes @ given by (2.7) with &
replaced by & '.

2459 J. Math. Phys., Vol. 22, No. 11, November 1981 Akira Nakamura 2459



either both Ai(z,) and Ai(z,) replaced by Bi(z,) and Bi(z,) or
only Ai(z,) replaced by Bi(z,) similarly to the case of cylindri-
cal KdV equation.?"*? By applying BT successively, in prin-
ciple we can obtain either multiple soliton or multiple rip-
plon [of Ai type, Bi type, or Ai-Bi mixed type (in the case of
two- and higher multiple ripplons)] or multiple soliton-mul-
tiple ripplon solutions.

V. BT IN PHYSICAL VARIABLES

We define potentials w, w' by u= —w,, u'= — w,.
From Eq. (2.1), this means
= —(2Inf),,w' = —(21Inf’),.Onthe other hand, in bi-

linear BT equations (5a) and (5b), terms containing operators
D,,D,.D,: can be re-expressed by In f, Inf" as

(D, £V Ff = (nf/f"), and so on,'* which in turn can be
expressed by w, w'. In this way we obtain the BT in physical
variables as

(w+w), —lw—w) +24w-—w)+ad,

XJ.dx (w—w)—2u—2al,(x+x,)=0, (5.1a)

a,fdx W — W) + (0 — w)ee

— 2 = W+ ) + Yo — wP

~safw+w), - (523, [ w—w)]

2
- 6a}.c7dex (w—w)—3pu+al,lx+x))w—w)

+ 6a[v o (x X))+ —g—/iyy(x +x,)2} =0. (5.1b)

VIi. DISCUSSIONS

In the present paper, we have constructed generalized
BT’s for 2D KdV equations. We have newly revealed that
precisely the same nonlinear superposition relation, ex-
pressed by Eq. (2.6}, holds not only between the usual soli-
tons but also between decay mode solutions (ripplons) and
even between solitons and decay mode solutions (ripplons).
This means that not only various solitons but also various

J

APPENDIX A: BILINEAR OPERATOR IDENTITIES

ripplons and even solitons and ripplons can be superposed on
each other freely, the last being an essentially new finding.
Such unified simplicity may suggest the possibility of a uni-
fied picture such that just as any permanent profiles can be
described completely as the nonlinear superposition of var-
ious solitons, any decaying profiles can be described com-
pletely as the nonlinear superposition of various ripplons.
However, for the complete description, it seems necessary to
have another generalization to the present simple ripplon
solutions. For example, in the KdV limit or @—0 limit, pre-
sent simple ripplon solutions do not have the proper limit.
To make a rough comparison in the @ = 0 (1D KdV) case,
even the simplest, purely self-similar solution is known to be
expressed by an infinite series expansion involving Ai and its
integrals,”® while in the present case the purely self-similar
solution is not an infinite series as is seen from Eq. (2.9). This
implies a certain additional complexity in the case of 1D
KdV limit and/or the most general case.

In connection with the study of the cylindrical KdV
equation, Freeman®® and Johnson®’ reported the similarity
reduction of the 2D KdV equation into the cylindrical KdV
equation which may provide the implication that the N-soli-
ton solutions of the cylindrical KdV equation can be the
special class of solution of the 2D KdV equation (require-
ment for the similarity reduction needs y, = y, = ---; namely
all the heads of horseshoe ripplons are aligned on one line
parallel to the x axis). Our present work shows the general-
ization of superposition properties that horseshoe ripplons
can be superposed not only in the limited aligned configura-
tion but also in any arbitrary relative positions in xy plane
and also with any usual solitons. Another advantage of the
present BT approach is that both Ai? type and Bi* type solu-
tions are obtained on an equal footing while in the inverse
spectral transform method, Bi* type solutions are not obtain-
able because one cannot define the integral from infinity due
to the divergence. Although the Bi” integral itself diverges at
infinity, corresponding physical solutions in the u variable
may provide a nondivergent useful solution if one is confined
within a finite xy region. In the case of the cylindrical KdV, it
was actually the Bi® type solution written as Eq. (4.7), which
reproduced the results of experiment.”'

The following identities hold for arbitrary functions a, b, ¢, d.

D, ca-a =c,aa,

(D, D,a-a)bb — aa(D,D,b-b) = 2D, (D,a-b)-ab = 2D,(D,a-b )-ab,
(D*a-a)bb — aa(D*b-b) =2D,(D3a-b)ab — 6D (D2a-b)(D,ab),
D,(D.D,ab)ab+ D,(D,ab}D.ab)— D,(D2ab)ab =0,

(D, a-b)ed — ab (D, c-d) = D, ad-cb,

(DZa-b)d —ab(D2%cd)=D,{(D.ad)ch + ad(D,cb)},

(D.ab)c — (D a-c)b = —a(D,b-c),
(D2ab)e — (D2a-c)b= — 2a,(D,bc) + a(D, bc),,

(D}a-b)e — (Diaclb = — 3a,.(D,bc)+ 3a,(D,bc), —4a{(D3bc) + 3(Dyb0)ss |,
— a,, (D, bc) — a,(D,bc), + la{(D3bc) + 3(D, b)),
D?(D.a-c)-ac — D (D3a-c)ac + 3D, (D2a-c)-(D,ac)=0

(D2ab),c — (D2a-c),b =

2460 J. Math. Phys., Vol. 22, No. 11, November 1981

(A1)
(A2)
(A3)
(Ad)
(A3)
(A6)
(A7)
(A8)
(A9)
(A10)
(All)
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APPENDIX B: PROOF OF BILINEAR BT OF 2D KdV EQUATION
We can check that Eqs. (2.5a) and (2.5b) satisfy Eq. (2.4) as follows:
W=D, (D, + D) ff'}-ff' = 3D.AD: f f)D, f-f') + 3&°D, (D, f- /') £ (B1)
=D, “(SanD!:) + 6aAD, + 3u + ad,(x + x\))D, + 3a(v +p,(x +x;) + %—lw(x + x,)z)} f.f'].ff'

+3aD,[{ D% - 24D, — (@ + ad,x + x YA £} £f =0, (B2)

Equation (B1) is obtained by using equations (A2) and (A3). In (B2), terms with —— vanish from (A4) and terms with ---- from
(A1). Remaining terms also vanish due to (A1) and (A2).

APPENDIX C: PROOF OF COMMUTABILITY OF PRESENT BT

We forget every assumption used so far and newly start from the Fig. 2 configuration where solid lines represent known
or assumed BT’s and broken lines represent the relation which we prove here to be a BT First we prove the upper broken line
of Fig. 2. The assumption that solid lines are BT’s means that

(D} +24D,+aD, +r)fy /=0, (C1)
(D% +24,D, +aD, +r)fo-f, =0, (C2)
(D, +D?} — 3aD,D, — 6aA,D, — 3r.D, —3as,) fy f, =0, (C3)
(D, +D? — 3aD,D, — 6al,D, — 3r,D, — 3as,) fo /, =0, (C4)
= + aiiy(x +Xx;), 5, =v; +px +x,) + %‘Aiyy(x +xi)2’ Six =Ty (Cs)

Next, we define a new function f;, in terms of f;, f;, f; as
Sofuo=c,t D, — A, + A fi-for (C6)
Notice here that £, , is newly defined here and should not be confused with f£,, or f,, in Fig. 1 (because we are now considering

the Fig. 2 situation).
Then we prove that Q, defined by

Q,E(Di +A,D, + aDy + rz)fl‘.frz {C7)
vanishes. The proof is as follows: Multiplying (C1) by f5, (C2) by ( — £,), and adding the results, we have
0= — 2D, =41+ ) i o + Sl Dy — A, + A fi- o) + Sl =14+ 40D, —aD, +r —n} fi-f
= = (//eDs + A+ M) fo S+ S —aDy + 1 =AY =+ AN A (C8)
(D + 4, + Lo for S =clpt) —aD, +r = A} —r, + A3V fir o (C9)
Then we see that

01 /oo =D} + 24D, +aD, + 1) fi- Ji)) oo = F1 D2 + 24, + @D, + 1) fir S,
=D [{(Dx — Ay + ) fv ol fo oo + [ oDy + A+ Ao fy o} | + @D, fi S foFras
= —acD, [, /D, fi o) + acD, f, /D, f- fo) — ac, fi foDs — Ay + Ao) fi- S (C10)
Thus forc, =0 or ¢ =c(t), Q, vanishes.
Next, consider the time part BT. We prove that Q,, defined by
Q,=(D, + D} —3aD,D, — 6al,D, — 3r,D, — 3as,) f,- f1» (C11)
vanishes.
First, we multiply (C3), and (C4) respectively by f, and { — f,) differentiate (C1) and (C2) with respect to x and multiply the
results, respectively, by 3/, and — 3f, and add all results; then we have, after using (C5),
3
2
+3ald, — A, } frr /o =0. {C12)
Next, we multiply (C11) by £, f5, (C4) by £, f,, and subtract the results to obtain
Qofof2 = {D, —3akD, — 31D, + 3 D3} fi frfofio + 1D D2 — 2aD,) fi- fi)fo Frz

+ 2D, fi- SHD, for fro) + [ £AD2 = 2aD)) for fi2} — (32/20D, £, fo-{(Ds + Ay + A3) fir Fra] — 3 whifafofia
(C13)

(3/20)D% — 2aD,) for fro + (D, — 3alA, + A)D, = 3{r, + ra)D, ~ 4 D3 + 3als, — 5,) + A, — A,)D>
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Meanwhile, from Ff:f, = 0 and the assumption of a BT relation for fy«—f;, f; assures Ff,- f; = Ff,- f, = 0. Then we

have

0= (Ffl'fl)fzfz “flf|(Ff2'f2) = 2Dx(Dr fl'fz)'flfz + ZDi(Dx fl'fz)'flfz + 6asz(Dy fl'fz)’flfz-

(C14)

In (C13), we eliminate every f;, £, by (C6), (C9), and (C12). Then using (C14), we obtain

Q. fofa = {3ac(p, — M)y + 6acd A, —/Il)y +cld; — 4y), + ¢4, *iz)}f%f% —(c, + 6aC/11y)f1fz(Dxfl'f2)-
r

For our present scheme, a set of parameters (4 ,u,v) take two
possible cases; constants given by Eq. (2.6) or certain func-
tions of y, ¢ given by Eq. (2.8). Thus in (C15), combinations of
{A1gt1,v1) and (Ay,1,,v,) have 2 X 2 = 4 possibilities of the
cases of Egs. (2.6) and (2.8). We can check directly that in
each of these four cases, the right-hand side of (C15) actually
vanishes by taking ¢ properly asc = constorcot /2,
Therefore, we have proved that the upper broken line of
Fig. 2 is really a BT relation. Similarly, the lower broken line
is also a BT. Thus we have proved both commutability,
fi2 = /o1, and that flz is connected by a BT to f| and £, and
can be a new solution.
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Evolution equations associated with the discrete analog of the matrix
Schrodinger spectral problem solvable by the inverse spectral transform
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Through the generalized Wronskian technique we derive the whole class of nonlinear differential
difference equations associated with the discrete analog of the matrix Schroédinger spectral
problem. For such equations we briefly discuss soliton solutions, continuum limit, and Backlund

transformations.
PACS numbers: 02.30.Ks
1. INTRODUCTION

In a previous paper, hereafter referred to as I,’ the dis-
crete analog of the matrix Schrodinger spectral problem
(DMS) was investigated through the Riemann technique,”
and the evolution equations for the nonabelian Toda-lattice
were derived. The aim of the present paper is to construct the
whole hierarchy of nonlinear differential difference equa-
tions (NDDE’s) associated to such spectral problem which
can be solved by the inverse spectral transform (IST), whose
first member is just the nonabelian Toda-lattice.® For this
purpose, it is convenient to look at DMS from a point of view
closely analogous to that chosen by Calogero and Degasperis
in order to investigate the continuous case,* and thus some-
what different from the approach followed in I. So, in Sec. 2,
we briefly recast the direct and inverse spectral problem al-
ready treated in I; in Sec. 3 we derive the generalized Wrons-
kian relations appropriate to DMS; in Sec. 4 we give the
associated class of NDDE's elucidating the corresponding
linear time evolution of the spectral data. Section § is devot-
ed to the treatment of a special subclass of such NDDE’s,
which has an interesting continuum limit, while in Sec. 6 we
give a preliminary sketch of Backlund transformations relat-
ed to the spectral problem under scrutiny.

2. DIRECT AND INVERSE PROBLEM
A. Basic notations

Throughout this paper we shall use upper case charac-
ters for matrices, the only exception being given by the nota-
tionoy (k = 1,..,N? — 1)whichdenotesthe N> — 1 matrices
that, together with the identity matrix o, = I, constitute a
basis for the space of N X N matrices. Moreover, in the fol-
lowing, greek indices will run over the values 0,....N? — 1,
while latin indices will run over 1,...,N 2 — 1; the summation
convention for repeated indices is always understood. Upper
case script characters will be used to indicate 2N XN
matrices,

We shall use the conventional notation for commuta-
tors (anticommutators) (4,B] = AB — BA ({4,B }

= AB + BA ), and the Dirac notation for ordinary C " vec-

“Present address: Department of Physics, Rockefeller University, New
York.
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tors. We shall also introduce the operator 1 which, applied
to a 2N XN rectangular matrix, will transform it into a
2N X 2N “block diagonal” matrix, according to the formula

Lal= 5

Finally, matrix combinations of the type 4,4,4; + B,B,B,
will usually be expressed (somewhat loosely) through an in-
ner product notation (#",,n[7",]7";), where

4
7, = [B_] and (7,7")=A,A4, + BB,

B. Direct problem

The discrete analog of the matrix Schrodinger spectral
problem corresponds to the eigenvalue equation (see I)

Pn—1)+Bn@n)+AnP@n+ 1)=Ad(n), (2.1)

where @,B,4 are N X N matrices depending on the discrete
variable # (running over all the integers) and possibly on a
continuous variable, say ¢, and the “potentials” 4,B satisfy
the boundary conditions

lim 4(n) —I=0,

{7l —e0

(2.2a)

lim B(n)=0,

|| —> o0
with respect to some norm in the linear space of N X N
matrices.

As remarked in I, under conditions (2.2) our spectral
problem has a twice degenerate real continuous spectrum,
which can be parametrized by setting A =z + z~!, zbelong-
ing to the unit circle of the complex plane. A fundamental
matrix solution ¥ (n,z) of (2.1) pertaining to the continuous
spectrum can thus be characterized by the asymptotic
behavior

(2.2b)

Yz ~ z7"+R(2)2", (2.3a)
Ynz) ~ z7"T|z), (2.3b)

where R (z) and T (z) are the “reflection” and “transmission”’
matrix coefficients.’

As to the discrete spectrum, it has been shown in I that
it consists of a finite number .#” of complex eigenvalues,
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which correspond to the poles z; (j = 1,..., .4 of T'(2), all
lying inside the unit circle. The corresponding normalizable
vector eigenfunctions |1);(n)) are characterized by the as-
ymptotic behavior

irﬁ,-(nwn_;+ el ) (2.4a)

li/f;(n))n;_ oz "I, 7, (2.4b)
where

T, 'l =0. (2.4¢)

So, once given the “potentials” 4 (n), B (n) one can determine
uniquely the matrices R (z), T (z), the eigenvalues z; and the
vectors | *).

C. Auxiliary problems and transformation properties

First of all, we associate to the eigenvalue equation (2.1)
different asymptotic conditions for the solutions, by defining
a new fundamental matrix solution ¥ (n,z} according to the
formulas

Pnz) ~ 2T, (2.5a)
n—s 4 oo
P(nz) ~ z"+z "R (2.5b)
Moreover, we can introduce the adjoint eigenvalue equation
Sn+1)+PnBn)+Pn~1)4(n—1)=1D (n)
(2.6)

with the same potentials as Eq. (2.1), and define, as previous-
ly, two fundamental matrix solutions corresponding to dif-
ferent asymptotic conditions, i.e.,

v (n,z)n:+ 2" "4+ 2R (2), (2.7a)
v (nz)n; " "T(z), (2.7b)
v (n,z)’H: wz"T(z), (2.8a)
Pinz ~ z"+z "Rz (2.8b)

Let us now define the n-independent Wronskian matrix W
through the position

®,(n + 1)@n),
(2.9)
where &, is a solution of (2.6) and @, is a solution of (2.1).
It is easily seen that inserting into Eq. (2.9} the pairs
(P, )P, ‘I/) (‘I’ (¥, ¥)inplaceof(®,,P,), one gets the fol-
lowing relationships between the four “reflection” and
“transmission” coefficients previously introduced:

W[an(”)’d’z(n)] = 1(")‘4 (n)Py(n + 1) —

Rz WRE@+TE T =1, (2.10a)
R(z)=R{z), (2.10b)
Ri@)= ~T@RE T "), 2.11a)
T)=T@=I—RE@RE NI ' 1),  (211b)

2464 J. Math. Phys., Voli. 22, No. 11, November 1981

Rz)=R2), (2.12a)

Tiz)=Tl). (2.12b)
In particular, from (2.8b) it follows that the discrete eigenval-
ues of problem (2.6) associated to the asymptotic conditions
(2.8) are the same as those pertaining to the problem (2.1)
with the asymptotic conditions (2.3), while the correspond-
ing vector eigenfunctions are characterized by the asymptot-
ic behavior ¢

Wl ~ Z@i, (2.13a)
@)~ z7di ), (2.13b)
where
@\ T 1) | = (d!* | T~ g) = 0. (2.13¢)
D. Inverse problem
It was shown in I that the spectral data
= (R {2zl = Dz {1z ] < Doyl M@l = 1, Y],
(2.14)

p, being related to the singular behavior of T'(z) forz = z;
through the formula

T(Z) “pj _/|Cl )><d‘+)‘ M|+O(1)

allows us to recover uniquely the potentlals.

Actually, from S we can construct the kernel H (n) of the
discrete analog of the Gel'fand~Levitan-Marchenko
equation,

(2.15)

Kl +Hin+1)+ i K(nmH(m+1)=

n+ 1
N Q2mi) ! ﬁ - dzz" ~ 'R (2),
(2.16b)

0,(2.16a)

zzpjtc N

j=1

and once {2.16a) is solved, we can find 4 (n) and B (n) through
the formulas

A —T=Kinn+2)—K(n—1n+1)
+ [K(n— 1,n) — K (n,n+ V)]K(n,n + 1),
(2.17a)
Bn)=K{nn+1)—K(n—1,n). (2.17b)

3. GENERALIZED WRONSKIAN RELATIONS
A. Basic identities

In order to establish a one-to-one correspondence be-
tween the functional relations connecting two different pairs
of “potentials” and those connecting the associated spectral
parameters, it is convenient to define a generalized
Wronskian. .

To this aim, let us denote by ¥ '(n,z), respectively ¥ (n,z),
two fundamental matrix solutions of Eq. (2.6) {with *“poten-
tials” 4 '(n),B '(n)], respectively (2.1), with the asymptotic
conditions (2.7), respectively (2.3), and associate to them the
matrix bilinear form W', which we shall define as the gener-
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alized Wronskian
W ¥'nz),¥nz2l = ¥'(nzd ' (ne@n+ 1.z
— ¥'(n,1,2)¥(n,z), (3.1)
where
¥ (nz)=F(n)¥(nz) + Gn¥n+ 1,2), (3.2)
F(n)and G (n} being so far two arbitrary n-dependent matri-
ces.” A straightforward computation yields
W'in)— W'n—1)
=4 (P ()A"(n)G (n+ 1A Hn+1) ~ G(n)]¥
X¥n+ 1)+ &'(n)[Fln—1)—Fn)]¥@n)
+ @A Fr+1)—Gn+ 14 (n+ 1)B(n+ 1)
+B'(n)G(n) — F(n—1)4(n)]¥(n + 1)
+ W' (n)[B'(m)F(n) —~ F{n — 1)B (n)

+Gh—1)~A'(nGn+ 14 " n+1)]¥(n). (3.3)

Equation (3.3) is the fundamental identity from which, by
proper choices of the matrices F (n), G (n), any relevant rela-
tionship can be derived, as it will be clear in the following.

Let us first choose
F(n) = F(n-independent}, G(n)=0. (3.4)

Then, by summing up identity (3.4) over all integers and
taking into account the asymptotic behaviors of the poten-
tials and of the wavefunctions, Egs. (2.2), (2.3), and (2.7), we

immediately get, having setu =z7} — z,
— W(FR (z) — R(2)F)
+ = —
= 5 (T4 WF—FAmEn+1)

¥ n)[B'(n)F — FB(n)]¥(n)}.
If instead we set

Fny=0, A'(n)Gn+ 14" n+1)—~G(n)=0,
(3.6a)

J

(3.5)

which implies

G(n) = IT'(n)GIT ~'{n + 1), (3.6b)
where®

e =[] 40k 1'm =] 4°0) (3.6
we get

1lzGR (z) —z7 'R '(2)G ]
= 5 (T BT )G "+ 1)

~ I-TQ'Q(n)GH“(n +U)Bn+ B]¥n+1)
+ U'(n)UT'(n — WG ~ ') — H'(n\GH ~'(n + 1)]

X ¥ (n)}. (3.7)
Finally, let us assume that F (1) and G (n) vanish (rapidly

enough) as |n}— «0; in this case, we introduce two new matri-
ces P(n) and Q (n) through the formulas

Pin)=4'(nGn+ 14 ~'(n + 1) — G(n),
Q(n)=Fin—1)—Fin),

(3.3a)
(3.8b)

which, once inverted, give

Gln)= — ”’(ﬂ)[ i I (y='P(HI(j + 1)]17 N+ 1)

= = (def) _Izz"(n); (3.9a)
Fin) = }5’: Q) (3.9b)

It is perhaps worthwhile to emphasize here that, due to the
arbitrarity of ¥ (n)and G (n), also P (n) and Q (n) are essentially
arbitrary matrices, the only constraint concerning their be-
havior as |n|— oo, Wwhere they must vanish as G (n)and F (n) or
faster.

If we now define the operator A through the formula

Pn)B(n+ 1)+ 4'n)[Q(r)+ Q(n+ 1)] + B'(nZ(n) — Z(n)B(n+ 1) + i [P(j\(n) — A (m)P())]

j=n

A [P(”’] = 3 (3.10)
QN pia) + 0@ () — Z0n) + Zn — 1+ 3 [Q(1B ()~ B )@ ()]
we get from formula (3.3) the new identity, which holds for any entire function w{4 ),
5 Pwaed )l F @) <o) S (Pl F 7, At

where we have set

o P(n)

Fn)= [Q (n]], (3.11b)

52 l?'(n)

7n) = [;,,—,(n}], (3.11c)

W (n)
7 (n) = [W(n+ ”], (3.11d)

and nave used the notations introduced in Sec. 2A. We notice now that relation (3.5) as well as relation (3.7} can be written for
each of the basis matrices o,,, and that Eq. (3.11a) holds for any choice of P (n),Q (n), provided they vanish at infinity: So we can,

in particular, identify % (n) first with
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A'(njo, — 0,4 (n)
[B ‘(n)o, — orVB(n)]
and secondly with
[B "I (n)o T~ (n + 1) — IT'(n)o 1T ~Yn + 1)B(n + 1)
' n — Yo IT~\(n) — H'(n)o, 1T ~'(n + 1) ]

Hence we can assert that two different pairs of potentials and the corresponding reflection coefficients are related by the
equation

plfid o R(2) — R'(2)o,) + 8,4 )o.2R (z) — 2~ 'R (2)0, } = z (7/ (n), [,va(A)[

mo, 0T~ + 1) — I "(mjo T ~'(n + B (n + 1)
m'\n = Vo, i1 ~\(n) — I '(nor, 1T ~'n + 1) ”7/("))'

A'(mo, — 0,4 (n)}
B'(njo, — 0, B(n)

B
+ 78,4 _)[ et
(3.12)

B. The limit (4'(n), B'(n)}—(A(n),B(n))

Let us now assume that the potentials, and consequently the wavefunctions and the spectral data, depend parame-
trically on a novel variable, say ¢ (time) by setting

A(n)=4A(n,t), A'(n) = A (n,t + At), (3.13a)

B(n)=B(n,), B'(n) = B(n,t + At), (3.13b)
and thus

R(z)=R(z,t), R'(z) = R (z,t + Ar). (3.14)

Then, we insert these positions into the equations derived in the previous subsection, and investigate the limit At—0. Let
us begin by considering such limit for the operator A, defined through formula (3.10): we get a new operator, say L,

which acts on elements like: (g(:l))) as follows:

[ Pn)B(n+ 1)+ A NQ () + QU + 1) + BS(n) — S(Blr+ 1)+ S [P()A )]

L_[P(")]= i = (3.15)
U | BmQn) + P(n)— Sin) + S — 1)+ 3 [Q(),B ()]

j=mn

where S (#) is the limit of X (n) as At—0, i.e,,

mm=nm{in*wwmnu+n} (3.16)

Lj'=n

Performing the same limit in Eq. (3.12), having set there f, = h (47)™ '5,.0-8, = 0, and recalling Eq. (2.10b), we
obtain

+o f_ A,

n= — oc

On the other hand, starting again from (3.12) and letting Az—0 with no further position, we can write the identity
ll’[(‘fv(/1 ) + li/lgv(;(' ))UV’R (Z) + gilgv(i ){UV’R (ZH

S [4(n),o v]]
=2 (y(" { (L )[[B (nho. ]
[B(n)H(n}aVII_’(n + 1) — T (no 0T ~'(n+ 1)B(n + U]}V(n))

(3.18)
n— VYo, I~ 'n)—HOno I ~'(n+1)

+7g,(L)

4. NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY IST
A. NDDE’s and evolution of the reflection coeffcient

The formulas derived at the end of the previous section allow us to define the class of NDDE’s associated to DMSP
which can be solved by IST.
Indeed, we can assert that if the potentials (4 (n),B (n)) evolve in time according to the NDDE,
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A,(n) Bind (n)
h "i’[&(n)] +g°"1’[ An—1)—A(n)

In— o I~ '(n)

_A(nw(n+1)] f(L)[

[4(n)o,]

[Bn)o,]
[B (nMI (n)a JT ~'(n + 1) — H (n)a, [T ~'(n + 1)B(n + 1)] —0o

~ o T 'n+1

(4.1)

the corresponding reflection coefficient, associated uniquely with the potentials for any value of 7, evolves according to the

linear evolution equation
h(A)R,(2) = — ugdA R (2) + (£(A) + k8. (4 ) o.R

(2)] — bug. (A )

oR (2)}, (4.2)

where, we stress it again, A, £, g, are arbitrary entire functions of their argument.

So, the solution of the Cauchy problem for any NDDE
belonging to the class (4.1) can be achieved through three
different steps, all involving just linear problems: (i) the solu-
tion of the direct spectral problem {2.1) at a given time ¢, in
order to determine R (z,2,); (ii) the integration of Eq. (4.2), to
get R (z,¢); (iii) the solution of the inverse problem to recon-
struct the evoluted potentials (the existence of bound states
will be taken into account later). We remark that Eq. (4.2)
can be integrated in closed form, yielding

Riz,t) = Uzt — to)R (2,1} Uz 't — 1), (4.3)
where

Ulz;t) = expltZ(2)], (4.43)

Z=h"'ALA) +28,(4)]0,. {4.4b)

B. Evolution of discrete spectrum parameters

In this subsection we shall prove that the discrete eigen-
values z; do not evolve in time and that the degenerate
matrix

¢, =ple )} @.5)
has the same time evolution as the reflection coefficient R (z)
[Eq. (4.3)] with the obvious substitution z—z;. To this aim,
we need the time evolution of the transmission coefficients
T (2),T (2), since {d || p; arerelated to T'(z) [Eqs. (2.13c) and
(2.15)] and |c| *) is related to T'(z) by the formula
|

g.iL)—

Pt

i - (A1)

L-

(where by the subscript indices xm we denote the corre-
sponding matrix elements of the considered operator),

r() =B (M (jlo 7' (j+1)
—~H(jo 1 ~'j+1)B(j+ 1),
s,(=[4(ho,],
u,(j) = [B(jo,],
v =+ Yo /I = (j) = H(jlo T ~(j + 1).

Now performing the time-derivative of Eqgs. (2.4c), (2.13c),
and (4.6) and taking care of Egs. (4.7a) and (4.7b), we get

=D, ={Zz7 ") +z7 '"HA)]le "y + 147 ¢;), (4.8a)
A, = —di 2@z Y+ 6,(di+)), (4.8b)
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-8 ))

T-'z)lc ) =0, (4.6)

which follows by noting that |¢;(n)) = ‘125 (n)) and taking
into account the asymptotic behaviors (2.4a) and (2.5a),
The procedure to derive the time evolution of T {z) [T (2)]
is closely analogous to that followed for the reflection
coefficient.
The resulting evolution equations read

T(2)=[Z@" ") T2)] +2z '‘HA)T(2), (4.7a)

T(2) = [Z(2).T(2)] — 2T G 1), (4.7b)
where thetime-dependent matrices H A, G {A )aredefined as

H{A)=D,1)— Dyd )+ zD4A), (4.7¢)

Gt)=D\A)+Dyd) —z7'Dyh), (4.7d)
where

D\A) =8u(A ) T (~ o 1T

TN — w) =0y},
Dii)= 3 (=Wl T[&IL)s.A))

+ &L Yokt () +FAL )11 ) +FAL ) 10,()]

IT(j+ T Y~ o),
DyA)= Z [ 8L )15, (J) + &, (L )22, ()
j= —
+ LAL Y2 r, ) + FIL 220, (D)),
having set
7 - x;m = 1,2)
r
™ =Zz)le ")) + 7™, (4.8¢)

where 7, *),8, are in principle arbitrary scalar time-depen-
dent functions; however, as [¢/;(n)) is determined up to a
single arbitrary n-independent scalar function, it follows
from formulas (2.4) that %, =’ = %/ *. On the other hand,
deriving formula (2.15) with respect to ¢, and comparing the
resulting expression with Eq. (4.7a) one easily gets

(zj)z =0,
k=~ + &p;-

Of course, Eq. (4.9a) implies the isospectrality of the flow
defined by the evolution equations (4.1). Finally, from for-

(4.9a)
(4.9b)
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mulas (4.8b), (4.8¢c), and (4.9b) one gets
Gilt) = Ulz;st — 1,)Ci{to)U

" Nz St — t). (4.10)

C. Soliton solutions

As usually, soliton solutions are obtained from the Gel-
"fand~Levitan-Marchenko equation when the reflection co-
efficient vanishes identically on the unit circle, and therefore
are expressed in terms of the bound state spectral data
{2,,C;},~ ..., only the matrices C; evolving in time ac-
cording to Eq. (4.10). It is convenient to set

Cylt) =u; exp[2£;€;(2)]1P,(2), (4.11)
where
zy=exp(—§;),  p; = 2sinhg,
(+) +
R ARACHa) 12
@5

It can be shown that, if we have N simple eigenvalues, the
corresponding solution of Eq. (4.1) splits asymptotically into
V" separated solitions, whose “positions” and “polariza-
tions” are given respectively by £; and P;. These parameters
evolve in time according to the formulas

E(t) =gt + (26,)”
Xm{ SN = 1)U ~ro)|c}+’(to)>]
<d1( tonc 7))

’

(4.13)
]

LP(n)=A(nfP(n)+ Pln+ 1)+ S (n — 1) (n)

GF=I(n~—V)FII ‘(n+1)—HnFI '(n+2)—
(F being any constant matrix).

—AMS(n+ 1)+ 3 [PGLA ],

[F.4 (n)]

Py(t) = Uzt — to)Py{to)U ™'z, 5t — tol{d | ko)l (to))
X[(d’”’(’o)l U™l Yt ~ 1)U g5 ~ tolle} ™ (e} ]

(4.14)
As an example, we report explicitly the one-soliton solution,
already derived in I

A(n,t) =TI+ sinh® sech®*{({ [n + 1 — E(£)1}P (),

(4.15a)

B (n,t) = sinh?¢ sech{{ [n —§ — £ (1)}}
Xsech{{ [n+ 4 — &) P(e) {4.15b)
A detailed analysis of the time-behavior of such solution for

a generic NDDE belonging to the class (4.1) will be per-
formed in a separate paper.

5. AN INTERESTING SUBCLASS OF NDDE’s
A. Definitions and soliton solutions

From the definition of the operator L Eq. (3.15) one can
easily see that the initial condition B (n,t,) = 0 for any
NDDE of the class (4.1)implies B (1, ) = Oifftheg, ’s are odd
functions of their argument, while 4, and the £,’s are even
functions. In this case, the system (4.1) reduces to a single
equation for the potential 4 (n,t), which reads

h (LA (n) + gol-L [ A (n ~ 1) (1) ~ 4 (n)A (n + 1)]
+ [ LA )0, ]+8.(L)%0,, (5.1)

where we have introduced the new operators

To Eq. (4.4) corresponds the following linear evolution equation for the reflection coefficient:

h(A2R (2) = —~ AugdA *)R (@) + £, (A

(A2 [0..R (2)] + Ug. (A

| (5.2a)
(5.2b)
A% [o0.R @)] - plo,,R (2)}). (5.3)

An analogous equation holds for the degenerate matrices C;(t ), once replace z by z;.

We notice that the requirement B (n,t ) = Oimplies, through Eqs. (2.15),{2.16), and (2.17), that the reflection and transmis-
sion coefficients are even functions of z for any ¢. From this property it follows in particular that the discrete eigenvalues z
occur in positive-negative pairs, each pair being associated to the same matrix C;. The corresponding simplest soliton solution

reads

A (n,t) =1+ 2sinh*¢ coshf sech{s [n + 1 — £(£)]] sech{& {n — £(¢)}}P(r). (5.4)

B. Continuum limit

We introduce the parameter 4 to denote the spacing of
the lattice and make the positions

=nA, (5.5a)

z = explixd ) {z; =exp[(p;4)1}, (5.5b)

A (n) = exp| — 4V (n)] exp| +AV(n + 1)1, (5.5¢)
where we have set

vim =" arQ0) (5.54)

so that
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Vin+1)=V(n)— AQ(x) — 14 Q. (x} + o{4 *). (5.5¢)
It is immediate to see that, with the above positions, as 4

goes to zero, the eigenvalue equation (2.1) with B (n) = 0 goes
into the matrix Schrédinger equation'”
¥, (x) + Q (X)W (x) = k2 (x). (5.6)

In this subsection we shall show that, in the same limit, the
whole class (5.1) goes into the class of NEE’s associated with
the spectral problem (5.6}, already derived and investigated
in CD. In particular, the first member of class (5.1 goes into
the “boomeron” equation.*!' To perform the continuum

limit it is convenient to start from the evolution equation in
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the spectral space (5.13). From formula (5.5b), expanding the

a(— ) =aA?)=4""[I% )+ /14 %)], (5.8b)

r.h.s. in power of 4, it follows that fol— 4% =h{A 3, (5.8¢)
= 2ik4 +o0(d?), (5.73)  and define the new time variable r as follows:
=4 5.9
A=2(1 — 44 %) +old?) (5.7b) T=4"" B9
. h bit functi it turns out that the reflection coefficient R {z), which can be
If we introduce the new arbitrary functions also considered as a function of the real variable k, evolves
B (— 4 =g, (A7), (5-88)  with respect to the new variable 7 according to the formula
J
fol — 4k 2R (k) = 4ikBo( — #O)R (k) + 2ikB( — 4k *){o1,R (k)} + a,( — 4k *){o},R (k)} +0(4 %), (5.10)
which, in the limit 4—0, goes exactly into Eq. (4.2.3) of CD written for ¥ = 0.
On the other hand, taking care of position (5.8b), the evolution equations (5.1) can be cast in the novel form
ho(-Z)A, (1) + go(-L)[A (n — 1)4 (1) — A (n)d (n + 1)]
+ 4, (L[4 (n)0.] + 1g(L)|ocA (n — 1A (n) — A ()4 (n + 1)o, ]
+{(2I—A(n)[A4(n)o. ]+ [A (n), i [4()o )+ T (n— Yo d1 “Nn+1)—H(njo T~ '(n+2). (5.11)

j=n

Though, at a first glance, Eq. (5.11) may look more cumber-
some that the original Eq. (5.1}, it comes out to provide a
more convenient starting point to evaluate the continuum
limit.

First of all, we consider the simplest case, where the
functiong, and &, do not depend on (). After a tedious but
straightforward calculation, taking care of the positions
(5.5), one gets

An—1A(n)—AnA@n+1)=2430,(x) +o(d*), (5.12a)

[4(n)o.]=4%[0,Q(x)] +0(47), (5.12b)

o.An—1A(n)—AnAdn+ l)o, + (21 — A(n))
x[no.] + 4, 3 [4(he.] + T~ o,

S AT = {n + 1) — I (njo, IT ~'(n + 2)
=24 *{{0,,Q.(x)} + [@x).[Vx),0. 11}
and thus, dividing by A * and then letting A—0,

Q. (x;7) = 2800, (x:;7) + a, [0,,Q (x;7)]

+ B {00 x:7)) + [Qxs7), [V ixs7ho. 1]]
(5.13)

which is exactly the “boomeron” equation. To recover the
higher NEE’s associated to the matrix Schrodinger spectral
problem, it is necessary to relate the discrete operator .
defined by formula (5.2a) to the continuous operator L, in-
troduced in CD Egs. (4.1.3) and (4.1.4). The correct connec-
tion is suggested by the analogous relation holding for dis-
crete and continuous formulas in the spectral space: so we
can assert that, due to the correspondence between applica-
tion of L, (') and multiplication by — 4«* (4 ?) in the con-
tinuous (discrete) case, the continuous operator L, is the linj

(5.12¢)

7.(A4)

(njo, —o,B(n)

y,and 8, being arbitrary entire functions, for the corre-

sponding reflection coefficients R (z),R '(z’) the following rela-
tionship holds:
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A'(njo, — o A4 (n)) _s (B "(m\IT "(n)o AT ~'(n + 1) — IT'(n)o AT ~'(n + 1)B (n + 1))
=0.14) IT'(n — Yo I ~\n) — I '(n)o, 01 —'(n + 1) '

— :
it, as A—0, of the discrete operator (.¥ — 47 )4 ~2. Indeed, if
we apply this operator to each of the arguments involved in
Eq. (5.11), which once expanded in powers of 4, all exhibit
the structure

A7P(m)=F(x)+od), (5.14)
we obtain
AL —4I) 4 PP(n)=L.Fix)+old), (5.15)

where

L(x) = Fo.(x) — 2(Q(x)F(x)} + (0, (x),fw dx'F(x))

+ [Q()c),[’[:° dx' Q(x'),Lﬁ dx" F(x”)]], (5.16)

which is just the continuous operator obtained in CD.
Hence, taking into account formulas (5.5}, (5.12), and (5.5) it
is a trivial task to realize that the class of NEED’s (5.11) has
the continuum limit

SoL)@x57) = 2B(L Q. (x;7)

+ a (L)o@ (x:7)] + By L. )Go,
(5.17)

which is the CD class of NEE's, the operator G being defined
there through formula (4.1.4).

6. BACKLUND TRANSFORMATIONS
A. Basic formulas
First of all, we note that Eq. (3.12) implies that, if two

pairs of potentials (4 '(n),B '(n)),(4 (n),B (n)) are related by the
formula

(6.1)
ﬁ vy —
v )[o.R(z) = R'(z)o,] =6,(A)[z0,R (z) —z7 'R (7)o, ].
(6.2)
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Denoting by Y (z) the matrix [y, (4 ) — 28,(4 )]0, the trans-
formations (6.2) can be cast in the more compact form

Y(2R(z)=R'2)Y{z™"). (6.3)
Among all the transformations belonging to the class (6.3), it
is worthwhile to focus on those leading from a solution of a
given NDDE of the class (4.1) to a new solution of the same
NDDE, that is on the so-called “‘auto-Backlund” transfor-
mation, defined by the subclass of (6.3) which commute with
the time-evolution (4.1). It is immediately seen that this sub-
class consists of matrices Y (z) such that

(Z(z),Y(z)] =0. (6.4)
In the following we will restrict considerations to “auto-
Bécklund” transformations. Among such auto-Backlund
transformations, we focus attention on those relating solu-
tions with a different number of bound states (corresponding
to a different number of solitons), which are given by the
poles of the respective reflection coefficients
R (2),R '(z) = R '(z) provided they can be analytically contin-
ued inside the unit circle.'?

From Eq. (6.3} it follows that, if ¥ (z~ ') has some singu-
lar point inside the unit circle, R ‘(z) supports a correspond-
ing larger number of poles than R (z).

Let us consider for simplicity a matrix ¥ (z) of the form

Y(z) = [y(d) = 28(4)]0,. (6.5)
It implies

R'l2) =R (z)yid ) — 284 W (HA) — 27 '8(4)) (6.6)
which shows that, generally speaking, R ‘() has a pole not
belonging to R (z) whenever the analytic function of z,
YA)—2z~ 18(4), has a zero. The simplest case occurs when
YA ) = y,6{4 ) = 8, so that only one new pole is generated,
located at

z=48/y (6.7)
and we assume of course |5 /7| < 1.

Formula (6.6) can then be rewritten in the form

R'iz)=R(z)(1 —2z2)/(1 —Z7'2). (6.8)
The corresponding pairs of potentials are related by the for-
mula [see Eq. (6.1)]
A'n)—An)=Z[B'(W)II' )] 'n+1)

—{'(mdT ~Hn + 1)B(n + 1)),
B'in)—Bn)=z[II'n — VI ~'(n) = IT'(0)II ~'(n + 1)],
(6.9)

where the pair (4 '(n),B ’(n)) supports one more soliton than
the pair (4 (n),B (n)).

For instance, if we set (4 {n),B (r)) = (1,0) then
{4 '(n),B '(n)) is just the one-soliton solution.

Indeed, expressing 4 ‘(n) in terms of the products /1 '(n)
the system (6.9) gives immediately

'(n + 1) — II'(n) = ZB ()T '(n),
B'(n) = z[II'(n — 1) — I'(n)). (6.10)

The resulting nonlinear functional equation for I7 '(n) can be
solved by setting

I'(ny=1+ af(Bn + )P, (6.11)

2470 J. Math. Phys., Vol. 22, No. 11, November 1981

P being some one-dimensional projector, which implies

fix+B)—fx) =21 fix — B) — f(x)]
X[1+af(x)}[1 +aflx +B)],
(6.12)

where x = fn + 7, and the parameters Z,c,f are no longer
independent.

Expanding (6.12) in powers of 3, having set
a=pf +0(B3%,2 =128+ o3 ?),wegetforsmallFtheso-
lution f(x) = 1 — tanhx, which comes out to fulfill (6.12)
identically (i.e. for any x and ) iff

Z=exp(—B),  a=\exp23)—1]
so that the one-soliton solution reads
IT'(n) = I + [exp(2B) — 1][1 — tanh(Bn + ¥)]P. (6.14)

This solution can be identified with that given by Eq. (5.4)
with the positions: 8=,y =§(} — §).

As a final remark on this topic, we notice that, unlike
the continuous case, the practical usefulness of Backlund
transformations in order to find explicitly novel solutions of
the same NDDE is rather questionable; actually, even in the
simplest case we treated above, we had to solve a nonlinear
functional equation, and we succeeded only through some
ad hoc positions which can be hardly generalized to more
complex cases. Of course, those computational difficulties
do not affect at all the theoretical relevance of Backlund
transformations.

(6.13)

7. CONCLUSIONS

The existence of a discrete counterpart also for the
NEE'’s associated to the matrix Schrédinger spectral prob-
lem, as it was previously found®"* for the scalar Schrodinger
and for the Zakharov—Shabat spectral problems, again raises
the question whether the discretizing procedure based upon
the underlying linear spectral problem, is the optimal one in
order to solve completely integrable NEE’s numerically. ' It
seems certainly worthwhile to compare the results which
can be obtained this way to those arising from other more
standard numerical techniques.

Besides this general problem, there remain to be investi-
gated in more detail some other problems specifically related
to the subject treated in the present paper: for instance, one
can try to settle for our NDDE’s a reduction technique anal-
ogous to that derived by Degasperis'® for the continuous
case, aiming at identifying subclasses of equations which can
be relevant for applications. It would be also interesting to
prove that our dynamical systems display an infinite se-
quence of conserved quantities, and to construct them
explicitly.

Furthermore, the isospectrality of the flow (4.1) sug-
gests the existence of a Lax pair for any equation of this class.
Work is in progress in all these directions.

'M. Bruschi, D. Levi, S. V. Manakov, and O. Ragnisco, “The nonabelian
Toda-lattice: Discrete analogue of the matrix Schrodinger spectral prob-
lem,” J. Math. Phys. 21, 2749 (1980).
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*See for example: V. A. Zakharov and A. V. Mikhailov, Zh. Eksp. Teor.
Fiz. 74, 1953 (1978) [Soviet Phys. JETP 47, 1017 (1978)].

*In the abelian case, the analogous problem was solved by R. K. Dodd, J.
Phys. A, Math. Gen. 11, 81 (1978); see also M. Bruschi, D. Levi, and O.
Ragnisco, J. Phys. A, Math. Gen. (1980) (in press).

*F.Calogero and A. Degasperis, Nuovo Cimento B 39, (1977); hereafter
often referred to as CS.

*They are related to the elements of the monodromy matrix defined in 1,
Eqs. (2.5a) and (2.5b), as follows: R (z) = b(2)a~'(2), T(z) = a~ '(2).

®The exact relationship between |[d! ") and |¢} =) is given in I, Egs. (2.12)
and (2.13).

"To simplify the formulas, we will always use in the following the short-
hand notation W'(n} in place of W'(U—/’(n,z),ﬁ(n,z)) and will also omit the
argument z in the expression of the wave functions.

*Throughout this paper we understand the products to be ordered from the
lower to the upper value of the running index. Note that the infinite pro-
ducts introduced in formula (3.6b) are well defined, due to the boundary
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condition {2.2a).

“We note that if g, = 0, the evolution of the transmission coefficient is

given by the similarity transformation
Tt)=Ulz7 st — )Tz, )U 7275t — t,).

'“The discrete analog of the Schridinger problem in the scalar case was
extensively investigated by K. M. Case: K. M. Case and M. Kac, J. Math.
Phys. 14, 594 (1973); K. M. Case, 14, 916 {1973}; 15, 143 (1974).

''F. Calogero and A. Degasperis, Lett. Nuovo Cimento 16, 425 (1976).

12380 far we never supposed this property; we now assume analiticity of R (z)
just for the sake of simplicity.

M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 16, 598 (1975); 17, 1011
(1976).

M. J. Ablowitz and J. F. Ladik, Stud. Appl. Math., 55, 213 (1976); 57, 1
(1977).

'SF. Calogero and A. Degasperis, “Reduction technique for matrix nonlin-
ear evolution equations,” J. Math. Phys. 22, 23 (1981).
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Classes of Borel summable functions are defined and studied. Some properties of these functions,
which are useful for high-order calculations pertaining to certain physical theories, are proved
and discussed. They include reciprocal Watson-like theorems, sufficient conditions for
membership in the classes, and asymptotic behaviors of the expansion coefficients after

composition of functions.
PACS numbers: 02.30.Lt

1. INTRODUCTION

Recently, the combination of large order estimates with
Borel summation was revealed as a powerful tool to push the
use of perturbation expansions outside the weak coupling
regime, both in quantum mechanics and quantum field the-
ory.' To be mathematically satisfactory, such a treatment
should include (i) a proof of the Borel summability and (ii) a
careful justification of the rather intricate calculations need-
ed to obtain large order behaviors. It also requires the manip-
ulation of various Borel summable functions (especially to
get an expansion of the asymptotic perturbation coefficients
in inverse powers of the order). In practice, the steps (i) and
(ii) are difficult and often (but not always”?) by-passed (the
Borel summability being, for instance, simply assumed if
compatible with the large order estimates). As for the formal
calculations on Borel summable functions, they are more
easily justified (or even performed) when appeal is made to
some general properties of these functions. The purpose of
the present paper is to collect such properties, to give their
proofs when necessary, and to comment on them. Some of
these properties (at least in weaker versions) belong to the
“know-how” of high-order practitioners. Others are new.
They are presented here in the accurate form of theorems,
some of which are mainly refinements of results imported
from the mathematical literature. In order to state these
theorems in a simple form we need to define suitable classes
of Borel summable functions {Sec. 2). These classes are “opti-
mal” in the sense that (i) they make the two Watson-like
theorems of Sec. 3 fully reciprocal statements and (ii) they
are invariant under the usual operations of algebra and anal-
ysis (Theorems 3 and 4 of Sec. 4). As for Theorem 5, which
gives sufficient conditions for membership in these classes, it
is of great use in proofs of Borel summability.> Theorems 6
and 7 have to deal with the composition of Borel summable
functions, and have direct applications to high-order
calculations.*

2. THE CLASSES /" AND 7~

Asis well known, the class of Borel summable functions
include those functions f{zj which {a} are analytic within
some sectorlike domain of the complex z plane (assumed to
be centered at the origin) with sufficiently large opening an-
gle; (b} admit an asymptotic power series

“Physique Mathématique et Théorique, Equipe de Recherche associated
with CN.RS.

2472 J. Math. Phys. 22 (11), November 1981

0022-2488/81/112472-10801.00

fA="S £ + Ry, (1)

with remainders R ,,(z) of limited and uniform growth when
M- . The “natural” analyticity domain which is referred
to in (a) turns out to depend on two parameters A and R
(0<A<im, 0 <R< ). It will be defined as the kidney-
shaped region (Fig. 1)

K(AR)= lQLL"“’I< (O,R), 2)

where K (0,R ) is the circle Re(1/z) > 1/R. As for the precise
statement of condition (b}, we shall give it in two different
forms to which correspond two useful subclasses (“.#” and
“% ") of Borel summable functions (and two variants of the
forthcoming Watson-like theorem).

Definition 1: Given R,o > 0 and A >0, we shall say that
belongs to N — (4,R,0} if: (i) £z} is analytic in the domain
K (A,R ) as defined in Eq. (2}, (ii} there exists a constant
A {A,R,0) such that f{z) admits the asymptotic expansion {1},
with
|R wl2)| <4 (A,R,0)M !|oz|¥ VzeK (A,R) and M =0,1,-

3
[Ry(z) is identified with f(z)]. e

We next define the class .4 by

A —(AR,0) = a N —(A,R",0'). (4)
O<R <R >0
Definition 2: Given A,R,0 > 0, feW — (A,R,0) if (i) f(2) is
analyticinK (4,R )and(ii) 3 4 (4,R,0)suchthatf(z)admitsthe
asymptotic expansion {1} with

[Rp(2)| <A (AR, 0\M | oz|™
I if |argz(<4
[cos{|argz] — 4 )]

M ifA<argz| <A + A

(39

forall zeK (A,R )and M = 0,1,--..
The class % is defined by
¥ ~ (AR,0) = a

O<cA’'<AD<R <RI >0
Remarks: (1) If feN — or W — (A,R,0}, then
[f.1<A4 (o)nle”, n=01,.. (5)
Indeed, f, =z~ "[R,{z) — R, ,(2)], and it suffices to make

z—0 within K (4,R ) on account of Egs. (3) or (3).
(2) For A > 0 it is obvious that

W— (AR a4
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N (resp#) — (A,R,0)C W (resp. ¥#") — (A,R,0). (6)

This inclusion relation is a strict one {as it will appear on the
example following Theorem 2). On the other hand, for any u
such that Oy < 4,

W (resp. %"} — (1,R,0)CN (resp-#") — (u,R,7),
where 7 = g/sin(A — u) (7)

(this results from K (u,R JCK (4,R ) and from the fact that
o<reosip — A ) for A<p<im + u).

(3) A function f(z) which for some b > 1 enjoys proper-
ties (i) and (ii) of Definitions 1 (or 2) with I" (M + b )in place of
M, obviously belongs to 4" (or #7} — (4,R,0).

(4) One can always choose the constants A4 in Eqgs. (3)
and (3') such that

A(AR'0)<A(A,R0), when A'<AR'<R. (8

3. BOREL TRANSFORM PROPERTIES

Let 27_ f.z" be a formal power series. Its Borel trans-
Jorm @(t) is defined by

o0 f;l ”

plt)= Yy=—t"

, o)
n=on!
If this series converges in some disk, it uniquely defines (¢ )
as an analytic function.
On the other hand, let (¢ } be an analytic function in a
neighborhood of the positive real axis. Then its inverse Borel

transform is defined by

flz) = (l/z)f: dre="p|t). (10)

If the Borel transform ¢ (¢ ) of a formal power series can be
continued in a neighborhood of the positive real axis, and if
the integral in Eq. (10) converges for some values of z, then
[f(z} is called the Borel sum of the formal power series for
those values of z. In favorable circumstances, the inverse
Borel transform f{z) turns out to be an analytic function
whose asymptotic expansion at the origin concides with the
formal power series. In this sense, the combination of formu-
la (9) with analytic continuation and formula (10) realizes the
reconstruction of the function f{z) from its coefficients f,,
even in the case where the series 2°_ . f, 2" diverges for all
nonzero values of z.>¢ Such a program clearly can make
sense for functionsin.4" or #” — (4,R,0) since, according to
Eq. (5),  (t) is analytic in the disk |¢ | < 1/0. That it actually
does is the main content of the following two theorems.

Theorem 1: (1) If a function f(z) belongs to.4” — (4,R,0),
then its Borel transform ¢(¢ ) [defined through Eqgs. {1} and
(9)] has the following properties

(a) @(t ) is analytic in the “corolla’:

CA’ = ‘BC U )y
Ho)= v e"Clo) (11)

C(0,0) = {¢ (dist(t,R . } < 1/}
(see Fig. 2).
(b)ForallR'<R and ¢’ >0,
@) <BA,R")e"R, ViteC(i,0o). (12)
(2) Conversely, a function @ (¢ ) which fulfills conditions
{a) and (b} is the Borel transform of a function
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f2)e4” — (A,R,a) uniquely defined by Eq. (10).

This improved version of Watson’s theorem®” is noth-
ing but a reformulation of a theorem due to Nevanlinna®
(hence our notation .#” for the corresponding class) and re-
discovered by Sokal.® We shall not give its proof, which can
be found in Ref. 9. It was the merit of Sokal to recognize that
the analyticity domain of f|(z) is not required to enter the
region |argz| > 7/2 for a Watson-like theorem to be valid
(thus allowing the value A = 0 in its formulation).

- The next theorem, which is an extension of Watson’s
theorem in another direction, is presumably new. It is more
like the original Watson’s formulation in the sense that the
value A = 0 is not allowed (hence our notation %" for the
corresponding class), but the restrictions on the behavior of
the remainders R,,(z), as given by Eq. (3'), are substantially
weakened. We shall give its full proof (partly made of La-
place transform arguments in disguise), although the first
part (1a’) is essentially borrowed from Hardy.®

Theorem 2: (1) If a functionf(z)belongsto %~ — (4,R,0],
thenits Borel transform ¢ (¢ ) [defined through Eqgs.(1) and (9)]
has the following properties.

(a’) @ () is analytic in the “keyhole”:

Hdo)={t] |t|<1/0}{t]| largt| <A} (11')

(see Fig. 3).
(b'yForall A’ <A, R'<R,and o' > o
lp(t)|<B(A' R o) VR, YeeH (A 0) (12}
(2) Conversely, a function ¢ (¢ ) which fulfills conditions
(a’) and (b’) is the Borel transform of a function
f(2)e#” — (A,R,0) uniquely defined by Eq. (10).
Proof:(1a')Let fe ¥~ — (A,R,0). ThenfeW — |1 'R ",0)
forany A’ <4, R’ <R, ¢’ > 0. From Eq. (5) the Borel trans-

form @ (t) of f(z) is analytic in the disk |z | < 1/0. Consider
now:

aft )= dzetif1z) (13)
Zrokary)  Z

The function f(z) being bounded on the boundary 9K (4 ",R '),
this integral is absolutely convergent for Jarg? | <A’ and de-
fines a function (independent of A ',R ‘) analytic in the sector
|largt | <A. Weshow thata(r ) and @ () coincide on a segment
of the positive real axis. Indeed, using Eq. (1) in (13, one has
fort>0,

M1
o) =" Zrrieg iR, ) (14

=0 n! 2r ok Z

On the boundary of K (1 ,R '),

(i1 =%
|z| = R 'cos(|argz|{ — 1)

when [argz|<A’,

when A '<|argz|<im + 47,
so that Eq. (3') implies

|Ry(2)| <A (A',R",0')M ('R ")™,
Then,

VzedK (AR (15)

G. Auberson and G. Mennessier 2473



N f ’ o M dz Re(l 1 A’
alt) = 5 <A R MR Fpemrn g Reowrio Ry [ agerres
n=on 9K (AR} Z 29 e
- dv t/R’)cosA ' — ssind ‘v PN ,
+ ZL (R ]<( 1/mA ("R "0 )M (0'R Ve /R (4" + R "/1sind ). (16)

Foranyz,0 <t < 1/0’,and Mlargeenough, chooseR ‘' = ¢ /M.Inthelimit M— 0,4 (A ',t /M,0")<A4 (1 ',R /2,0') and the right-
hand side of inequality (16) vanishes. Therefore, a(t ) coincides with the Borel transform ¢ (#) and is analytic in H {1,0).

(16} GivenA ', R",and o' (A ' <A, R' <R, 0’ > a), choose A ”

1 1

= (A 4+ A4 ")/2. According to (1a’), we can write

plt)=— dz—e'"f(z), |argt|<d”. (17)
2imlokir Ry 2
Then, Eq. (3') implies (for ¢ = |z [e)
1 ” ] ’ dZ Re(t /2] 1 " ’ ’ * /R’ 8 —
PU<S—AU RGN |Z = AL R ) | del RO
2 dK(A“R"Y Z 2 —ar
* dv [t] .
+ f (——~cos/1”+(9 — |tlsinfA " + 6 ) 0-»-9)]
(J TR )= It sind * +0)) + (6 — 6)
Q—LA (i II,R r’o,l)eit\/R [u " R ( 1 + . 1 )] (18)
27 [t]\sinfdA " +0)  sin{d " —6)
Hence, for |6 | <A, r
, if |argz|<A,,
i + A ) R t l 0 - {argz 1 ' O 24
( tH<_’A( R ,U)[/t-f-m]e’ R iio lfio<_,-k_~argz<§7r+/i', ( )
This bound has the form of (12') for |¢ | > €, and is immediate- Rz <L j " dre—Teosalizl 4 (2o 25
ly extended to the whole of H (1 ’,0"). Rulzll< 12| Jo T [Aselreml 23)
(2i) Let @ (¢ ) be a function verifying conditions {a’) and where
(b'). Since @ (¢ ) is analyticin thedisk | | < 1/0,itcanberepre- .
sented there as = [O , if (argz| <A, (26)
£ largz| — A, if Ao<largz] <dw + 4"
gtty= 35 _";t n (20) To bound |4 ,(re”®)| we choose 0,, 0, A, and R, such that
a=ofl 0<0,<0,<0'; <A, <A, and R’ <R, < R. Then, using
with Egs. (20), (21), and (12'), we obtain for 7<1/a,,
If, <4 (@3, n=0,1,~ (21) ,, -
- . . . mlre?) 1) E (oy7)"
for any & > o. Defining the function f(z) by Eq. (10), one easi- )
ly checks, by using the bound (12’) and rotating the integra- M
tion path, that £(z) is an analytic function in K (4,R ). <A{oy) 0y — 0, (o'}, (27)

(2ii) Defining now,

Ay lt)=@(t)— 2{1—1 M =01, (22)
we obtain
Ruld=f)— S f.2"

n=0_

= —I—J- dfe""exp( - Lfe"‘” )A wlTe
Z Jo z

Foranyd' <A,R'<R,0' >o,andzeK {1 ',R ), let us choose
Ay such that A " <Ay < 4, and

Y 1<A). (23]

i
JRM — ‘rcosa/\z\(a, ) M’ IyR 110,) =
|z 1/a,
=D{o')M! ‘“ 2" EWLRL ( -2
(cosay” '  cosa — |z|/R, dolz|

Do)y o2 M[l +[E(& "“R',0') 1/0,‘1:‘](_0_0)’"_1__
cosa cosa 1—-R'/R, o
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M!

and for 7> 1/0,,
|4, (re)|<|@ (7€) + z Vi

M1
<BA,Ry,00)e”% + Alog) 3 (oo7)"
n=0

<B(ALR,04)e7 " + 4 (oM (oor™

4 (o)
elog(o’/0y)
Inserting Egs. (27) and (28) into Eq. (25) and noticing that
|z} <R ‘ cosa when zeK (A ',R '}, we find

<B(A R o)™ + {o'n)™. (28)

dre™ rcosa/|z| + /R,

i)

(

cosa )Me - cosa/o(,lz(]
oyl2]
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Do)
Tsin(dg — A )

M| 22

M[1 +FA'R"o) (;)

oz M

| .

cosa

<G "\R"o M|

cosa

In view of Egs. (3'} and (26), we readily deduce from Eq. (29)
that feW — (A ,\R",0o')forallA' <A, R'<R and o' > 0, i.e.,
fer” — (A,R,0).

Q.ED.
As an example, the function
1 1
t)=— : O<Ad<im), (30)
elr) er/o—t e *jo—1t ( )

is analytic in H (4,0), in C (u,0/sin(A — u)) for u <A, and
obeys the bounds (12') and {12} with R = . It is the Borel
transform of the function

flz2y= —;—J:C die g (t)= “‘S'"202 cos[n + 14 Jnlo”*'z"
{31)

which can be analytically continued to the whole cut z plane
K (47, «), but do not belong to #” — (77, «0,0). In fact, for
Ir + A < argz <17, f|(z) behaves essentially as

(1/z)exp( — ¢")/0z) and diverges for z—0 in that sector, so
that fe 7" — (4, 00,0) but f€#" — (v, ,0) for v> 1. More-
over, f'(z) does not belong to .4 — (4, w0,0), although
fet —[u,00,0/sin{d — u)] for u < A.

Theorem 2 makes clear the reason for having restricted

A to be strictly positive in the definition of the classes

%" — (A4,R,0): in the limit A—0 the piece of the analyticity
domain H (4,0} of ¢ (¢) that lies outside the disk | | < 1/
shrinks to zero, and the analytic continuation of @ (¢ ) outside
this disk (which is part of the practical Borel summation
procedure) becomes meaningless. It is likely, however, that
by a suitable redefinition of the classes # — (1,R,0), a rem-
nant of Theorem 2 could hold even in the case A = 0. In that
case, the Borel transform @ (¢ ), still analytic in the disk

|t | < 1/0, would be required to admit a quasianalytic (and
thus unique) continuation on the line Imz = 0, Rer> 1/0. We
shall not explore this interesting possibility here.

4. OTHER PROPERTIES

Theorem 3: The classes N or .#" — (A1,R,0) and W or
7" — (A,R,0) are stable for the algebra structure of analytic
functions in K {4,R ).

Proof. If £, geN (4,R,0), then clearly af and
(f + g)eN (4,R,0). Consider now the product # (z) = f(z)g(z)
and denote by R /,,R/,, and R %, the respective remainders.
One has

M1
h@)="3 h,2"+ Rz, M=01.., (32)
n=0
with
hn = Z fmgn —m?
m=0
h M1
Rylz)= 3 fn.2"R% _,.(2) + R, (2)g(). (33)
m=20
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o\ MMe—M
M!

(29)
f
Hence, using Egs. (3) and (5),
M—1
IR 3(2)] = A7(0)4 5(4,R,0)|0z|" 3 m\\M — m)!
m=20
+ A7(A,R,0)4 %A,R,0\M !|oz|™, (34)
and noticing that m!(M — m)I<(M — 1)! for l<m<M — 1,
IR %,(2)| <3474 %A,R,0)M !|0z|™, (35)

which implies 2eN — (4,R,0).
An analogous proof holds for the classes Wor %#". Q.E.D.

We shall use Borel transformations together with Theo-
rems | and 2 to establish the

Theorem 4: Let f'(z) and F (z) be respectively the deriva-
tive and a primitive of /(z). Then,

(a) fe#" (resp.#") — (A,R,0) implies f'et”
(resp. 7") — (1,R,0).

(b)fe " (resp.# ,N,W) — (A,R,0) implies Fe V"
(resp. % " .N,W)} — (4,R,0).

Proof:

{(a)Letfe 4 (resp.#") — (A,R,0).ForanyA '<A,R ' <R,
o’ > a,choosed ",R ",0"suchthatd ‘<A " <A,R'<R " <R,
o' > " > o (where the equality signs hold for the 4" case
only). The Borel transform ¢ (¢ ) of the function f'(z) obeys the
bound (12) [resp. (12°)]. Then, using the Cauchy formula on a
circle with center ¢ and radius 3 ~,

S 7' 0") = Inflt, — 1], (36)

1,eC (resp.H) (A ',0'), 1,cdC (resp.dH ) (A ",0"),
one derives the following bound for the derivatives of ¢ (7 ):

97t )|[<BA R0 PIZ A" 0)]7e R

VeeC (resp. H) (A ',0). (37)
Now, due to the uniform convergence of the integrals, we are
allowed tocomputef'(z)frome ‘(¢ Jand @ " (r )by firstintegrat-
ing Eq. (10) by parts:

f&) =1, + f Cdte g (t) = fy + 2 f " dxe =g (zx), (38)

and next differentiating,
fie1= [ dre "1 ax) + 2xp "lexl]
0

=if die " "(t) + 19 "(¢)). (39)
Z Jo

This equation shows us that f'(z) is the inverse Borel trans-
form of the function

plt)=@'lt)+1p"(t), (40)

which according to Eq. (37), is bounded in C (resp.H ) A,0)
by

<
<BA'R o)l R, (41)
Then Theorem 1 (resp.2) immediately tells us that
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f'et (resp.#7) — (A,R,0).
(b) Let feN or W — (4,R,0). Then from Eq. (1),
Flo)="S F,2"+ %), (42)
where F, =}:)l/n (n =1,2,-),and
= jo i dz’R,, (2. (43)

Integrating on the straight line z’ = pz (0<p<1) and using
the bounds (3) or (3') in Eq. (43), we obtain analogous bounds
for #,,(z) and conclude that FeN or W — (4,R,0) Q.E.D.

The next theorem gives necessary and sufficient condi-
tions for a function £(z) to be in the class .4~ — (A,R,0) and
sufficient conditions for f'to be in the class 7~ — (4,R,0). It
will be recognized as a stronger version of a theorem already
(and more or less implicitly) used in proofs of Borel
summability.*

Theorem 5: Let f/(z) be a function analytic in K (4,R ).

{a)f belongsto.#" — (A,R,o)if and only if its derivatives
[ admit in K (4,R '), for any R ' < R and ¢’ > 0, the bounds

(n) [ 2 g " —
lf (Z)th (A’R ,0’)(”!) [COSCZ,I Z) 1Zi/R ] h 0’1’ ’
(44)
where
_ [0 if |argz|<A4,
a,l(z)—{\ |— if 1<|argz|<%7r+}»

(b) If for any /1 <A, R' <R, and ¢’ > o the derivatives
admit in K (A ',R '} the bounds

]

o

cosa, . (z){cosa,.(z} — |z|/R’)

n=0,1,- (45)
1

"z} <D (A ",R ,0") (n!)Z[

RISl + BULR 0" ") [~ dp np +n +
0

o 2 o Y
<fol8uo +BIAR ",0") (n!)(n + ”[(cosai ~lzl/R ) i

Ul

then fe %" — (4,R,0).
Proof:
(a) (i) Let fe 4" — (4,R,0) and zeK (A,R ).

Assume first |argz| <A. Then, on account of Theorem 1,

Sfz) = f dxe ™ “*x"@ "(zx), (46)
0
where, according to Eq. (37),
| "(zx)| <B(A,R " ,0')n)(o)"e! "R " (47)

forsomeR " (R’ <R " <R)and any o’ > o [clearly £ (1 ',0')
can be taken equal to ¢’ in this case]. Thus,

\f"(z)|<B(A,R ”,a’)n!f dxxe 1~ /R
0

B(AR”,a){ ‘)2( o )

1—lzl/R" \1—|z[/R"
<B(l R, ,03{ n) ( o ’>"‘ (48)
R'/R 1 —|z|/R

If now A< 4 argz <17 + A, we use Eq. (46) integrated by
parts,

f2) = fobro

+ f dx e~ *[nx" '@ ™Mzx) + zx"@ " T V(zx)],
(49)
and rotate the integration path by putting
x = pexp[ — iargz F 4 )], p>0.
Then the bound (47) is still valid on the new path, and for
some 0" (g < 0" <0’),

— peosa, +plzl/R”

Yo" |z|p" e

— o \n+1
<Ufoldro + BIAR",0") (n!)z[(n +1) (‘a‘) (-r +

o cosa,

Hence, since |z| <R 'cosa, (z),

R ’

a’—|zllz]/R ") [cosaz,1 f’\z\/R ” ]"] (50

(51)

1
(n) 5 B /1 R //, ” _______(___
Uf"(2)| < |fol 6o + B g )log(a 7o\ \o”

The bounds (44) follow from Eqs. (48} and (51).

(ii) Assume now f(z) to be analytic in K (4,R ) with its
derivatives bounded according to Eq. (44). Let {z, }, _  ,... be
any sequence converging to 0 in K (4,R ), and such that
\argz,|<im + A — €. Then Eq. (44) implies for any n,

) iz = || " daf o W) <k, 2 — 2,
ij=12, (52)

This means that {/""(z, )} 12... isa Cauchy sequence, which
ensures the existence of lim,_,f""(z), and allows us to define
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okt
—R'/R" cosa, {z) —

el

/. E_IT lim f"z) (zeK (A,R), |argz|<im + A — €)(53)
n! z—0
and
wei=fe)~ S £, (54

Making then zo—+0 in the Taylor formula,

flz) - z f‘"(z)(z—zo
1 (T — M) (22K AR,
U7ESTIA
(55)
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we obtain for M> 1,

_ 1 oy M — (M)
T e A A

where L, is any path between the origin and z that is con-
tainedin K (4,R ). LetzeK (4,R ‘). If |argz| <A, we take for L,
the radial segment between O and z. Then, we can choose
someR " (R' <R " <R )and use Eq. (44)in Eq. (56) to get for
any o' > o,

IRy (2)| <D (AR "0\ M \Mo™ |2|M

X [ dptt — o= (1 /R ")

1 M1
=D(AR".o)M!|o'z|MM f L —

o (I—ulzl/R ")
<MM!|U’2|M. (57)
(1I—R'/R") .

If A < + argz < }7 + A, the previous choice of the path L,
would lead to a crude (and in fact useless) overestimate of
|R4,(2)]. A better choice is obtained by considering the circle
Cthrough zand tangent to the line argz’ = + A at the origin
(notice that this corresponds to a straight line in the plane of
the variable 1/z, more natural from the Laplace transform
point of view). We take for L, that arc of C which joins 0 and
zinside K (4,R ). In the case A < argz < i + A, this means

Z'eL,iff Im(e” /z') = Im(e” /z), Re(e” /z')>Rele™ /z).

(58)
Recasting now Eq. (56) in the form
i/le —1
Rylz)= —=
(M— 1)
iA A\ — (M + 1} pid IANM — 1
A )
eL, \Z z z z
(59)

and using the following parametrization of L,,

e"/z' = iIm(e” /z) + (1/y)Re(e? /z), O<y<l, (60
we deduce from the bound (44),

|Rp(2)| <D (AR ",0" )M Mo"™|z|™ [Re(e” /2)]M

1 ' M1 ¢
R k) M s ["6n
o T y2 \y cosa,(z')— |Z'|/R"
Namely, since Re(e” /z) = cosa, (2)/|z| and

cosa, (2') = |2'|cosa, (2)/|z ]y,
IRy (2)| <D (AR ",0")\M'Mo"™|z|M~!

oz || M
Xf dy—(l—y}M"[l——y————] . (62)
o y R "cosa, (z)
and noticing that |2'|/y = |z|cosa, (z')/cosa, (z)
<|z]/cosa, (z),
IRp(2)|<D(A,R",0" )M )(|o"2|™ /cosa, (z))
1 uM— 1
XMf du
o (1 —ulz|/R "cosa, (z))
D /{,R II’ ” vy
< ( ' a-II)M! z ZI * (63)
{1-R’/R") cosa,lz)
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To remove the unwanted factor 1/cosa, {2), it suffices to
reinsert this bound in the rhs of

Ry (2) =fauz" + Ry, 1 (2), (64)

together with |f, | <D (1,R ’,0’)M 'o’™, which follows from
the Definition (53). Then,

lRM(Z)|<{D A4,R",0)

+ ——-————aD AR "0") '[(M-{- 1) (%)AH l]—\f—}—]M!lo'zW

1—-R'/R" cosa,
<[D AR o)+ DARTO)  de o ']M!Ia’zl“.
I—R'/R" loglo'/o")
(65)

Equations {57) and (65) reproduce the bounds (3), and we
conclude that fe 4+~ — (4,R,0).

(b) Minor and obvious changes in the part (ii) of the
proof above suffice to establish that conditions (45) imply the
membership of fin %~ — (4,R,0).

Q.E.D.

We have stated Eqgs. (45) only as sufficient conditions
for fe %" — (A,R,0), and actually they are not necessary con-
ditions. This can be seen as follows. Starting from the func-
tion g (¢ ) defined in Eq. (30) [which is the Borel transform of a
function f(z)e ¥~ — (4, «,0)] and using the representation
(46), it is not difficult to derive the large n behavior of f"(z)
by applying the saddle-point method. The result shows that

lim|f"(z)| = 2(nY)*e”* ", (66)
z—0 n—o0
in agreement with Eq. (31), but
20 n+1
Sup |f"z)| ~ 2(n!)}| —————— ,  (67)
zeK(A.aollf |rHoo 1+sind — |@ )

argz =@

which violates inequalities (45) indeed. The supremum in Eq.
(67) is attained for |z| = cos(4 — |@ |)/20n. Moreover, Egs.
(66) and (67) tell us that there are no “simple”” necessary and
sufficient conditions of the form (45) for fe %7~ — (A,R,0) (i.e.,
conditions expressed solely by means of bounds uniform in
|z| when R = ). In fact, using a Cauchy representation for
¢ (t) and Eq. (67), it is possible to determine completely the
analyticity domain of @ (¢ ) implied by conditions (45), which
is of course strictly larger than H (4,0) but strictly smaller
that C(4,0). Its shape is quite complicated, but the sets

{lz| = 1/0, A + iw<|argt |[<w} and {|argr | = 4,1 |>2/0]}
are still parts of its boundary.

The following theorem shows that, under rather gener-
al conditions, the composition of functions preserves the
Borel summability.

Theorem 6: Let £(z) be a function in
A resp. #7) — (A,R,,0,) with f; = 0 and g{z) a function in
N (resp. #7) — (A1,R,,0,). If there are A< A, (resp.A <4)
and R < R, such that

SIKA,R)CK(A},R ), (68)

with A} =4, (resp.d} <A4,)and R ; < R,, then there exists
a o such that 4 =gof'belongs to 4" (resp. %) — (1,R,0).
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Proof: Consider the .+ -case. First of all,
K{(A,RYCK{A,R)), so that the function # (z} is defined and
analytic in K (4,R ) on account of (68). We can write for all
zeK (A,R),

ha =g+ 3 8l

p=1
Now, according to Theorem 3, fPeN (4,R,07) for any p and
a; > o,. Hence,

V@) =3 f22" + Ri) (70)

n=p

@17 + R, (/). (69)

where

fo= S fufurts, (71)

my T my=n
and where the M th order remainder R 4
IR 2,(2)[ <43 — 1) (M —p + 1)
X [47AR,07)Ploi 2™, 1<p<M —1, (72)
as shown in Appendix A. Then,

f¢(z) is bounded by

M—1
=S b2+ RY) 73)
n=20
with
hO =£o
b= S, nl, (74)
p=1
and
Riy)="S '8, R22) + R (£(2) (75)
p=1
To bound R 4 (z), we use Eq. (72) together with
‘gp‘gA gAZ’R 2’0'2 )P(O'z)p (76)
and
IR %, (f(2)| <4 5(A,,R 5,05)M o3 )Y |f(2) |, (77)

which are valid for any ¢} > o, since the point f{2) is con-
tained in X {4,,R }). Thus,

M1
IR (2| <4 %o 2] le!(M —p+ 1434703y
e

+ AM 470 o5z ™, (78)

where wehaveused |f(z)| = |R (z)|<4 /|0 z|. Finally, intro-
ducing u = max(1,34/03) and noticing that

M_1
S pI(M — p + 1)!<3M ! [see Eq. (A5)], we obtain
p=1

IR b(2)| <4 Mo z|™ | 3u™ = + (d70)"
SUASYALR ;5,03 )M!|U’Z|M, {(79)
where
o =max[o},34/(4,R,00 )07 03 ]. (80)
It follows from Egs. (79) and (80) that ze.¥" — (4,R,0), with
o= inf max[o},347(4,R,0})070,]. (81)

o1 >0,

A similar proof holds in the % case, with
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f ’ ’
o= inf maxic},347(4,R0})0; UZ,M (82)
o1 >0, sin(/iz —A ;)
Q.E.D.

Remark: In particular, Theorem 6 always applies when
the function g(z) is analytic in a disk |z| < p: it suffices to
choose A<A, and R (< R) so small that 4 /(4,R,0} )0 R <p
for some o} > o,. Moreover, 0<0o, in that case, since 0, can
be taken arbitrarily small.

In our last theorem, we extend the range of validity of a
formula first obtained by Figerou®* (but previously known
and used in its “low order” forms). The virtue of this formula
is to give, under suitable conditions, a simple expression for
the expansion coefficients 4, of the function 4 (z) in Theorem
6, approximate up to a given order 7 in 1/n. An application
can be found in Ref. 4.

Theorem 7: Let fand g be as in Theorem 6. If moreover,
the sequence {f, } of the expansion coefficients of /{z) is abso-
lutely bounded by a positive sequence {f, } such that:

(i) {logf } is a convex sequence,

(i) £, >nz7f,,_1 for some o> 0 (n =2,3,-),

{ii1) for some integer >0, the expansion coefficients of
glz) satisfy

g, |<(G/k™f, _,_, for some
G>0 (n=r—+2,r+ 3, ), (83)
where

k=2f+f/5 (#0), (84)

then the expansion coefficients 4, of # = gofare given in the
large n limit by

ho=Sef, +70(-) (85)

where the ¢/s are defined by {in the sense of formal power
series)

d
z ex' = -—g(u}lu L $ (86)

Proof: According to Egs. (71) and (74), the coeflicients
h,, are given in terms of the coefficients f, and g, by the
expression

= Egp z fm, fm)"fm,,‘ (87)
P=1 m 4t m,=n
lame<n—p+1
We split up this sum into three parts:
by =i+ P+ B 88)
r+1
Wi=gfi+ Se, S fuen (89)
p=2 my b em, =0

lems<n—p+1

at least one m;>n — r

W="Sg, S et (90)

p=2 my e M=

lempen —r—1
3)
hln Z 8p Z fm,"fmp' (91)
P=r+2 m 4+ m,=n
lomgsin—p+ |
Introducing the sums
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S Fu Sy (92)

my+ e+ m,=n

S(np.q) =

I<m<n—gq
and using for them the bounds (B2) established in Appendix
B, we are able to show that # ® is of order £, _, _,. Indeed,

I B]< z|g,,|S(n,p,r+1)<[z|g,,|k<pr+1)

p=2

(93)
Likewise, from Eqgs. (B2), (B3), and (83),
n G n
< Y 18, IS (npp — )<+ Z S i Fupin
p=r+2 p=r+2
=(G/k)S(n—r2,1)<Gf,_,_,. (94)
Hence, using again property (ii), we get in the large » limit,

|hn - h (n”|
<H(f, , \<H A/ (n—naVf,_, =F,_,0(1/n)(95)

Considering now 4 ', we see that for # > 27, only one m, can
be >n — rin Eq. (89), so that

hy =g, + Zg,,p Z Soi S S,

=p—1 my 4ot m, =1
1<mul — (p — 2)

glf;: + an—[ Zpgp 2 fm,"'.fm,, v (96)
p=2 Myt tm, =1
lem<l—p+2

Finally, we obtain by putting together Eqgs. (95) and (96),
r !
hy =g, + zf,.,[E G+l S fn ---fmq]
=1 q=1 m+ o+ my =1

tempal —g+1

= 1
On the other hand,
9 gu) = Sa+ | Shx]
8 u;”i‘m,,—qgoq 8o 1| 2 S
=gl+ zx[[z(q+l)gq+l 2 fm,"fmq]'
= g=1 m et my =1
l<m<l— g+ 1
(98)
Therefore,
€ =&\

I
e, = Y (g+1)g, ., S Sty =12,
g=1 w4 my =1
I<m<l—q+ 1
(99)
and Eq. (97) reduces to the announced formula (85).

Q.E.D.

Remarks: (1) In actual applications of Theorem 7, some

work may be required to determine an appropriate majorant

sequence {f, ] (if it exists at all!). First, in order that Eq. (84)
be a sensible formula, it is necessary that the remainder

£, _,O(1/n) become really negligible with respect to f,, _,
when n— oo (at least for a subsequence of the integers n).

This imposes the asymptotic behaviors of {£, } and {f, ] tobe
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“essentially” the same, and fixes an upper bound to &. Then
the sequence {f, } can be extrapolated down to f, \- This has to
be done with the aim of minimizing k = 27, + f,/&, but un-
der the constraints f, > |f, | and the conditions (i) and (ii). A
rescaling of the £,’s [which does not spoil (i) and (ii)] may be
needed in this step. Finally, one is in a position to check
condition (iii).

(2) We wish to emphasize the usefulness and nontrivia-
lity of formula (85). Assuming for definiteness that
lim, __ inf|f,|/f, > O, one obtains for » = 0, the remarkably

n—oco

simple result

h, =g/, [1+0(1/n)], (100)
and more generally,
he=Sefo [1+0(1/n )], (101)

I=0
It is interesting to compare this formula with the following
one:

n—1
hy =3 ef, (1 —=1/n),
{t=0

which is exact (and easy to derive) but useless when n— oo .
One sees that, at the order (1/7)", acute cancellations occur in
Eq. (102) between the corrections / /n for /<r and all the
terms for which » + 1<i<n — 1.

(3) Condition (iii) is certainly satisfied if the function g(z)
is analytic in a disk |z|<p. In that case indeed, |g, |<y/p",
and condition (ii) implies

Jar 120 An—r — 1,
>k /p)"v/G>(k"/Glg, |, Yn>r+2, (103)

for G large enough.

To conclude, let us give, as an example, a family of se-
quences {f, ] for which suitable majorant sequences {f, } do
exist:

(102)

fo=cl(n+bla"e"cos(ng )

d,
[ a d2+ = +0( 1“)] (104)
n n

T+—+
witha >0, 0<¢’<fr and O <a < 1 [a < 1 in order that f{z)
belong to some %" — (,,.,a)]. Since |, |<CI(n + b )a"e"™, we
can try the choice

f. =Cl(n+b)a"e”™ for n>N. (105)
Then it is readily seen that conditions (i) and (ii) are satisfied
indeed (with & = a), when n is larger than some N, depending
only on b and a. Of course, the optimal extrapolation of {f ]
below NV and the determination of k£ will depend on the exact
values of f, for n<N. If now the condition (iii) turns out to be
satisfied, Eqgs. (85) and (99) give the asymptotic expression

h, =gl (n+ b)a"e"

8
8.(n) 5z(n) +_r(7”)_+0( 1 )]’
n n?

n n t!

(106)

X |cos(ng ) + ——

and allow us to compute explicitly &,(n),..
dy,..d,f,.f.,andg,...g .

.0,(n) from
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APPENDIX A
Let feN — (4,R,0) with f, = 0. Denoting by R 4,(z) the
M th-order remainder of {f/(z)]?, we show that for zeK (4,R ),

[R%,(2)| <337 — 1) (M — p + 1)![4 (A,R,0)]?|0z|™,
I<pM — 1. (A1)
The proof is based on the formula

R4 ="S fu"RE &)+ R Y, @RI @Y,
" (A2)
which follows directly from the decomposition.
far=r (Z)V {z))r !
= mZ}fmzm M_f‘,_:f‘;‘ 'Z+ R (2)
+ R}y, U, A3

since f(z) = R }{z).

We proceed by induction. The bound (A1) is true by
definition for p = 1. Assuming it to be true for R 5, '(z), we
obtain from Eq. (A2),

IR 4, (2)]
M—p
< Y Amlloz|™

me=1

+AM—p+ WWoz|M P42 Yoz|pf ' = A7|0z|M
311—1 —1M=p
x[———— S mM —m—p+ 2+ (M—p+ 1)!].

" (A4)

Then, noticing that m{P — m)!<2(P — 2)! for 2<m<gP — 2,
we have

ek R e